Runtime Environment

5. Runtime Environment

This chapter describes the software configuration for the COE runtime environment. All
software and data, excepting low-level components of the bootstrap COE, are packaged
as segments. A segment is a collection of one or more CSCls (Computer Software
Configuration Items) most conveniently managed as a unit. Segments are constructed to
keep related CSCl s together so that functionality may be easily included or excluded.

There are six segment types corresponding to the different types of components that may
be added to a system:

1. COTS: A segment totally comprised of commercia off-the-shelf software.

2. Account Group: A segment that serves as a template for establishing a runtime
environment for individual operators.

3. Software: A collection of executables and static data that extend the base functionality
and environment established by an account group.

4. Data: A segment composed of a collection of data files for use by the system or by a
collection of segments,

5. Database: A segment that is to be installed on a database server under the
management of the DBMS and ownership of the DBA. A Database segment can only
be installed on a database server and the instalation tools enforce this. Note that a
database client application segment can be installed on any workstation and usually isa
software segment type.

6. Patch: A segment containing a correction to apply to another segment whether data
or software. The corrections entail replacing one or morefiles.

In addition, segments may have attached characteristics, called segment attributes, which
serve to further define and classify the segment. There are six segment attributes”:

1. Aggregate: A collection of segments grouped together and managed as an indivisible
unit.

! Database server segments are supported only on Unix servers for this release. Database application
segments may be created for either the Unix or NT environment.

2 Subsection 5.5.33 discusses how to indicate segment attributes with the SegName descriptor. Segment
attributes are noted by the appropriate parameter within the $TYPE keyword of the SegName descriptor.
Aggregate and Parent attributes are combined into the single AGGREGATE parameter. The Child attribute
is indicated by the CHI LD parameter. COE Component is subdivided into the COE CHI LD and COE
PARENT parameters. Similarly, the Web attributed is subdivided into the WEB APP and WEB SERVER
parameters. Finally, the Generic attribute is indicated by the GENERI C parameter.

DIl COE I&RTS: Rev 3.0 January 1997 5-1

Runtime Environment

2. Parent: A segment that is part of an aggregate, but is considered to be the “root”
segment. The parent segment name is the name presented to an operator as the name
of the aggregate. An aggregate can have only one parent segment.

3. Child: A segment that is part of an aggregate, but is subordinate to a single segment
designated as the parent. An aggregate can have multiple child segments.

4. COE Component: A segment that implements functionality contained within the
COE, as opposed to a mission-application segment.

5. Web: A segment that uses Web-based technology to create the application. A Web
segment is either a Web server, or a Web-application segment (e.g., a client
application). A user requires a Web browser to access Web-based segments.

6. Generic: A segment that is to be automatically added to al “usual” account groups
(see subsection 5.4.10 below). This feature allows a segment to participate in multiple
account groups without the need for the segment to explicitly name each account

group.

Note: The attributes listed here are often used in the vernacular as if
they are segment types (discussion of an aggregate segment, a
COE-component segment, a Web segment, etc.). Technically
such usage is incorrect because these are attributes and not types.
When discussing segments by attribute, it is implicitly understood
that there is an underlying segment type, usually software.

Segment installation is accomplished in a disciplined way through instructions contained in
files provided with each segment. These files are called segment descriptor files and are
contained in a special subdirectory, SegDescri p, called the segment descriptor
subdirectory. The segment descriptor files embody a technique that alows a segment to
“self-describe” itself. That is, the segment descriptor files contain pertinent information
describing the segment, such as the segment name and type. This information is used by
other software in the COE and other segments that need to access functionality contained
within the segment. But the descriptive information is also used by people to aid in the
integration process, to aid in security analysis of the segment, or in configuration
management. Installation tools process the segment descriptor files to create a carefully
controlled approach to adding/deleting segments to/from the system. The format and
contents of the segment descriptor files are the central topic of this chapter.

Principles contained in this chapter are fundamental to the successful operation of the
COE and achieving DIl compliance is largely determined by how well developers apply
the details given in this chapter. Appendix B summarizes the compliance requirements
stated in this chapter into a series of checklists organized by Category 1 compliance levels.
Developers are required to adhere to the procedures described herein to ensure that
segments can be instaled and removed correctly and that segments do not adversely
impact one another. Unless otherwise noted, all requirements apply to both Unix and NT.

5-2 January 1997 DIl COE I&RTS: Rev 3.0

Runtime Environment

Note: In this chapter and throughout the 1&RTS mention is made of
occasions when approval is required by a Chief Engineer. Unless
otherwise stated, this means the DIl COE Chief Engineer for
COE-component segments and mission-application segments that
affect interoperability. All other references refer to the Chief
Engineer responsible for the mission-application segment (e.g.,
GCCS Chief Engineer, ECPN Chief Engineer). The Chief
Engineer is not necessarily a DISA engineer, and will not be for
the majority of the mission-application segments. Likewise, use of
the term SSA refers to the responsible SSA unless otherwise
qualified.

DIl COE I&RTS: Rev 3.0 January 1997

5-3

New and Obsolete Featur es

5.1 New and Obsolete Featur es

This DIl COE release includes a number of improvements over previous COE releases. A
list of the more significant improvements is provided here for developers who are aready
familiar with the IMCIS or GCCS COEs, or a previous DIl COE release.

The present release is backwards compatible with previous IMCIS, GCCS, and DIl COE
releases. Segments presently in use do not require modification to work with the features
described here. However, certain features from previous IMCIS and GCCS COE releases
are now obsolete and support for them will eventually be phased out. Obsolete features
are listed in a subsection below.

All of the features from the previous 1&RTS have been preserved. Segments which have
been migrated to any version of the DIl COE do not require additiona work to be
compatible with this issue of the I&RTS Compliance-level requirements have not been
increased with this release, but the compliance criteriain Appendix B have been reworded
and reorganized for clarity.

Periodic modifications to the DIl COE and the |& RTS are made for several reasons:

to address non-Unix environments,

to allow extension to other problem domains,

to provide support for new and emerging technologies,

to generalize the COE concept,

to improve site installation and administration of segments,
to simplify or clarify certain segment descriptor files,

to further reduce integration problems,

to meet emerging mission requirements, and

to apply lessons learned.

5.1.1 New Features

This subsection is broken into two parts. The first summarizes DIl COE features that were
not present in IMCIS or GCCS COE releases. This list is repeated from the previous
I&RTS version and its purpose is to assist developers migrating from those two
environments to the DIl COE. The second summarizes new features in this release that
were not present in the previous I&RTS release. Its purpose is to serve as a handy
reference of new features for developers aready using the DIl COE.

FeaturesNot in JIMCISor GCCS COE

COE-component segments are defined and installed in a special COE directory.

Segl nf o contains most segment information instead of using individual segment
descriptor files.

5-4 January 1997 DIl COE I&RTS: Rev 3.0

New and Obsolete Featur es

Segment executables are stored in a bi n subdirectory rather than a progs
subdirectory to conform to commercial practice.

Library modules are stored ina | i b subdirectory rather thana | i bs subdirectory to
conform to commercia practice.

Segments may reserve space to allow room for growth.

Segments may request space on multiple disk partitions.

Segments may specify NFS® mount points.

Segments may request system reboot after installation.

Segments may affect the user account creation/deletion process.

Segments may perform cleanup operations during the Makel nst al | process.
Segments are automatically compressed by Makel nst al | (this can be disabled).

Post I nstal |l and other installation-related scripts may prompt operators during
segment installation.

CCESer vi ces isextended to include other system services.
|cons and Menus are supported.

Local and remote segments are supported.

Character-based interfaces are supported.

The COE contains a COTS license manager.

Configuration definitions’ are supported.

3 NFS support is provided for the benefit of legacy systems. DFS is preferred, but few applications are
ready to take advantage of DFS. Moreover, some designers may elect not to use DCE in favor of other
distributed computing environments such as CORBA or DCOM/OLE. The I&RTS will be extended in a
future release to provide direct DFS support. Segment developers may not ater the Unix
/ etc/ exports file. This is set in the kernel COE or through COE-component segments created by
system designers to export only those directories actually required to be NFS-mounted.

* Configuration Definitions were called variants in previous IMCIS/IGCCS COE releases and in the
previous |&RTS The concept is the same, but has been extended and refined in this release. See Chapter 2
for more information.

DIl COE I&RTS: Rev 3.0 January 1997 5-5

New and Obsolete Featur es

A Pr ocesses descriptor fileis supported.

#i f def -style constructs are supported in segment descriptor files.
The installation tools set Unix file permissions and owner.

New tools and extensions are described in Appendix C.

Segments may use a boolean “OR” to specify segment dependencies so that a
dependency can be fulfilled by one or more segments.

Segments may request temporary disk space for use during the installation process;
such temporary disk space will be deleted when the installation is complete.

A new segment type has been added to accommodate components that are to be
managed by the DBMS.

New Featuresin this| & RTS Release

Database applications are supported through SHADE. Descriptor information is
provided in this chapter.

The concept of data scope (local, global, segment, etc.) is extended to encompass
database scope (e.g., unique, shared, universal).

The draft PC-based COE from the previous |&RTS release has been formalized and
incorporated as appropriate to this Chapter. It is further described in Chapter 6.
Several new descriptors and keywords have been added to support PC NT
applications.

Support is provided to add NT registry entries (see the Regi stry segment
descriptor).

Standard NT file extensions (e.g., . TXT, . EXE, and . BAT) are supported for
segment descriptor files.

Web-based applications are supported and are described further in Chapter 7.
Descriptor information is provided in this chapter.

Guidance and support for DCE applications is provided. DCE-based applications are
described further in Chapter 8. A new DCEDescri p descriptor and several new
keywords are provided to describe DCE servers.”

® In this I&RTS release, DCE servers are available on Unix platforms only. DCE client applications may
be on Unix or NT platforms.

5-6 January 1997 DIl COE I&RTS: Rev 3.0

New and Obsolete Featur es

The $KEY keyword is added to enforce certain requests (such as installation with
“root” privileges) that require Chief Engineer approval.

The location for shared libraries is now specified (i.e, in the segment’s bi n
subdirectory).

Child components in an aggregate may now have a conditional load attribute. This is
described more fully below, but it allows a child segment to be loaded only if it
represents a newer version than what is already on disk.

The concept of a generic segment is added. A generic segment is automatically made a
member of every account group, except those which are character-interface-based.
The segment may also specify account groups that it isto be excluded from.

Support is added for three new types of processes. RunOnce, Privileged, and Periodic.
Privileged is available for Unix only, but the other two are available for both Unix and
NT. RunOnce processes are executed the first time the system is rebooted, but not
thereafter. Privileged processes are those which require “root” permissions to execute.
Periodic processes are the Unix equivalent of cr on processes, permitting a segment
process to be run at specified intervals.

Support is added to allow site installers to temporarily install a segment to test it.

Support is provided to allow site administrators to create application servers that
contain software for multiple platform types. Support is included for “dynamic
loading” of segments.

Segments may add executables to run during the user profile creation/deletion just as
with the account creation/deletion process. Support is also added to alow executables
to be run when a profile switch is performed.

The segment installer tool, CCEl nstall er, issues a warning to the operator
performing the installation if an attempt is made to load a segment that is an earlier
version of one that is already on the disk.

The COEI nst al | er tool maintains a status log of segments as they are loaded and
provides the ahility to print the status log. The status log may also include output from
scripts (such asPost | nst al |) that isnormally sent to st dout or st derr .

A $EQUI V keyword has been added to the SegNane descriptor. In effect, this allows
a segment to be known by an alias.

DIl COE I&RTS: Rev 3.0 January 1997 5-7

New and Obsolete Featur es

The Hel p descriptor has been added as a placeholder for future expansion. Its
purpose is to identify “help files” within the segment and their format (Unix man page,
HTML, etc.).

5.1.2 Obsolete Features

The features listed below are being phased out because changes were required to extend
the DIl COE to address the Joint community, to address problem domains other than
command and control, and to extend to non-Unix platforms. The previous release of the
I&RTS indicated most of these items as obsolete. They are collected here as a ready
reference. This release adds only one new requirement: usage of the $KEY keyword. This
keyword is used in instances where the 1&RTS requires Chief Engineer authorization for
some requested feature, such as permission to create a COE-component segment. To
preserve backwards compatibility for existing features, Veri fySeg only issues a
warning if the $KEY keyword is missing. An error is generated when the $KEY keyword
is missing for new features. Developers should begin using the $KEY keyword in all
appropriate places because a future release will issue errors instead of warnings.

Support is still provided for each of the obsolete items listed below, but documentation for
them has been removed from this release of the I&RTS. Segment developers and program
managers should upgrade® to the latest DIl COE to ensure future compatibility. Support
for the obsolete features may be removed from the next release. The tool Veri f ySeg
will issue warnings when run against old segments to identify obsolete features.

The MACHI NE environment variable is now obsolete. The MACHI NE_OS and
MACHI NE_CPU environment variables should be used instead. Segment developers
should not depend upon MACHI NE being defined.

Individual segment descriptor files are now obsolete. The Segl nf o descriptor file
should be used instead. It is divided into sections which correspond to the earlier
individual descriptor files. Converson to Segl nfo is required for Level 8
compliance.

Releases of the IMCIS and GCCS COEs allowed severa path-related environment
variables to be defined in the environment extension file. This is discouraged in order
to reduce the size of the environment variable space, which is a scare system resource.
Level 8 Compliance limits segmentsto a single path-related environment variable.

Subdirectories progs and | i bs are now obsolete. Subdirectories bin and I'i b
should be used in order to conform to conventional practice.

® The obsolete features are primarily in the content and format of the descriptor files and should not
require any source code changes. The effort required to upgrade should be a matter of editing the segment
descriptor files and running Ver i f ySeg. A tool, Conver t Seg, described in Appendix C is available to
automate the conversion to the extent possible.

5-8 January 1997 DIl COE I&RTS: Rev 3.0

New and Obsolete Featur es

The old format of the Dat a descriptor file is obsolete. The size required is now
specified in the Har dwar e descriptor instead of the Dat a descriptor. Level 8
compliance requires uses of the new format.

Previous versons of the COE adlowed DEI NSTALL, Postlinstall, and
Prel nstal | torunwithroot privileges. This capability is no longer the default. The
$ROOT keyword must be used instead and Chief Engineer approva is required to run
with root privileges.

Previous releases of the COE dlowed a $PATH keyword in the Menus and
Reqr dScri pt s descriptors. This is now obsolete since the 1&RTS specifies the
location of where files must be located relative to the segment's home directory.

Segment descriptors ModNane and ModVer i fy have been replaced with SegNane
and SegCheckSum respectively. The SegType descriptor file has aso been
replaced by the SegNane descriptor file.

In earlier releases, the parent segment for a child had to be listed in the Requi r es
descriptor. Thisisno longer required because by virtue of naming the aggregate parent
in SegNane, there is an implied dependency. Child segments use the $PARENT
keyword to explicitly name the aggregate parent. The parent uses the $CHI LD
keyword to explicitly name the children in the aggregate.

The $COVPONENT keyword is now obsolete and is replaced by the $CHI LD
keyword.

Previous COE releases automatically provided a system menu bar. Applications must
now use the Executive Manager APIsto explicitly request a system menu bar.

DIl COE I&RTS: Rev 3.0 January 1997 5-9

Disk Directory Layout

5.2 Disk Directory Layout

This subsection describes the COE approach for a standardized disk directory structure
for al segments. A standardized approach is required to prevent two segments from
overwriting the same file, creating two different files with the same name, or similar issues
that frequently cause integration problems. Unfortunately, such problems are often not
discovered until the system is operational in the field.

In the COE approach, each segment is assigned its own unique, self-contained
subdirectory. This subdirectory is caled the segment’s assigned directory or the
segment’s home directory. The segment’s assigned directory is established at segment
registration time. It obviously must be unique among all segments that are installed in an
operational system. A segment is not alowed to directly modify any file or resource it
doesn't “own” - that is, outside its assigned directory. Files outside a segment’s assigned
directory are called community files. COE tools coordinate modification of all community
files at ingtallation time, while APIs to the segments which own the data are used at
runtime.

Figure 5-1 shows the COE directory structure. The root-level directory for the COE is
/ h. Underneath / h, disk space is organized into the following categories (note the close
parallel to segment types):

COTS segment descriptors for installed COTS products

AcctGrps templates for establishing a runtime environment context

COE component segments constituting the COE
data subdirectory for shared (local and global) data files
Web subdirectory for Web-application segments

Segments one or more subdirectories for mission-application or other segments

USERS operator home directories with operator-specific items such as
preferences
TOOLS collection of useful tools for the development environment

Web-application segments are collected into their own subdirectory to segregate them
from all other types of applications. This is to make it easier to identify and control them
from a site-administration’ perspective. The Web-server segment is a COE-component
segment and therefore is located under the COE subdirectory. Web-application segments
may or may not also be COE-component segments, but they are placed under the V\eb

" Web servers and mission-application segments will likely be placed behind a firewall to administratively
restrict platforms that outside users can gain access to.

5-10 January 1997 DIl COE I&RTS: Rev 3.0

Disk Directory Layout

subdirectory in either case. If they are dso COE-component segments, the specialized
processing performed for al other COE-component segments is done as well. The
installation tools automatically place Web segments in their proper location.

Figure 5-1 does not show other important disk directories, such as the Unix /et c
directory. The/ et c directory is one of afamily of related directories which contain Unix
system files. Other COTS products may require specific directories as well, and there are
other important system directories that are specified to each operating system.

(1]

COTS| | AcctGrps| | COE | | data | [Web| | GSORTS| | JCALS| .. | USERS| [TOOLS
0os COE Web Operators
Extensions Component Applications
Segments
RTE shared Mission Apps Developers
Templates data and
Other Segments

Figure5-1: DIl COE Directory Structure

Developers may not directly ater or create files outside of their assigned segment
directory. DIl compliance mandates strict adherence to this directive, with the following
exceptions:

1. Temporary files may be placed in the operating system temporary? directory. For Unix,
this is the directory pointed to by TMPDI R (typicaly /t np). For NT, use the
applicable Windows API to locate the temporary directory. However, disk space is
limited so developers must use this temporary directory sparingly and shall delete
temporary files when an application is done.

2. Segments may place data files in the / h/ dat a directory, and are required to do so
for shared data (see subsection 5.4.4 below).

8 For Unix, the COE deletes all filesin the temporary directory when the system is rebooted. This does not
occur for NT system. Developers should make it a habit to delete all temporary files when they are
finished and not rely upon the operating environment to delete them. This will ease porting problems and
isamatter of good programming practice.

DIl COE I&RTS: Rev 3.0 January 1997 5-11

Disk Directory Layout

3. Operator-specific data files shall be placed in subdirectories underneath / h/ USERS
(see subsection 5.2.2 below).

4. Files may be added to the / h/ TOOLS directory. This is a community directory for
tools useful in the development process. Segments shall not place any files in this
directory which are required at runtime since this directory is not installed at
operationa sites. This directory is described in subsection 5.2.3.

5. Segments may request that the COE tools modify community files during the
installation process.

6. Segments may issue a request to modify a file to the segment which “owns’ the file.
This shall be done through use of, and only through use of, published APIs.

As software is loaded onto the system, the / h disk partition may eventually run out of
disk space. The COE ingtallation software will automatically create a symbolic link® to
preserve the logical structure shown in Figure 5-1, and delete the link when segments are
removed. Hence, Figure 5-1 represents a logical view, not a physical view, of file and
directory locations. Due to the potential need to relocate segments at installation time
based on available disk space, DIl-compliant segments must meet the following
requirements:

Segments shall use relative pathnames instead of absolute pathnames.

Segments which use symbolic links to point to files contained within the segment shall
use relative pathnames for the link.

Segments which use symbolic links to community files may use absolute pathnames as
long as (@) the segment can determine the community file’'s location at install time and
(b) the segment can resolve linking to a community file which may itself be a symbolic
link.

(Unix) Segments which add an environment variable to the account group’s global
runtime environment for locating files within the segment shall use a single “home’
environment variable. Environment variables of this nature are normally required only
when the segment files are to be accessible by other segments. Addition of the “home”
environment variable is done by the segment installer through use of extension files
and must not be done directly by the segment.

To illustrate the last requirement, consider a segment that provides a continuous readout
of time-until-impact for a missle. Assume the segment’s assigned directory is
M ssl eTDA and it’s segment prefix is MSLE. The Reqr dScri pt s descriptor file (see
below) is used to add the following to the account group’s. cshr c file:

® Symbolic links are called shortcutsin NT.

5-12 January 1997 DIl COE I&RTS: Rev 3.0

Disk Directory Layout

set env MSLE HOVE /[h/ M ssl eTDA

VMSLE HOME is called the segment’s home environment variable. Static data within the
segment can be referenced by $MSLE HOVE/ dat a while executables may be referenced
by $SMSLE_HOVE/ bi n. This technique of using relative pathnames means that segments
can be easlly relocated at development, integration, or instalation time by modifying a
single environment variable.

The last requirement stated above does not apply to environment variables defined for use
purely within the software development environment. The COE requires that the runtime
environment be separated from the development environment. This is typically done by
separating environment variables and other settings into physically separate files. The
development environment is not present during runtime for the operational system.

Also carefully note that the last requirement stated above applies only to the account
group’s global runtime environment, not a local runtime environment. When a segment
executable is launched, it inherits the environment established by the account group
template. It may then add to its local runtime environment through techniques equivalent
to the C put env () function.

The time-to-impact example illustrates additional COE requirements regarding definition
of ahome environment variable.

A segment home environment variable shall point to the segment’s assigned directory,
not a lower level subdirectory (e.g., point to the directory / h/ M ssl eTDA and not
to thedirectory/ h/ M ssl eTDA/ Scri pt s).

(Unix) A segment home environment variable, if added to the global environment,
shall be added through an environment extension file (see Reqr dScr i pt s below).

If a segment home environment variable is required, it shal be named
segpr ef i x_HOMVE, where segprefix is the segment prefix. Segments which use the
same segment prefix must ensure that only one segment defines a home environment
variable. This requirement assures that home environment variables are uniquely
named between segments.

Segments shall not define a global environment variable that can be derived from an
already-defined environment variable. For example,

set env MSL_DATA $MBL_HOVE/ dat a

is redundant and is therefore not allowed because the expression $MSL_ HOVE/ dat a
can be used wherever $MSL__DATA can be used.

DIl COE I&RTS: Rev 3.0 January 1997 5-13

Disk Directory Layout

Segments shall not use the “~” character (or NT equivaent) to specify relative
pathnames in the runtime environment, whether to define a home environment variable
or any other environment variable.

Unix allows statements of the form

source ~/ Scripts/.cshrc.tst

in.cshrc, .l ogin, and smilar scripts. The “~" character is substituted at run time
with the name of the home login directory (as defined in the / et c/ passwd file).
Suppose this statement were contained ina . cshr ¢ file and, to prevent making duplicate
copies and managing updates to this file, another segment wishes to use the Unix sour ce
command to include this . cshr c file in its own environment. Any segment wishing to
source the example . cshr ¢ file must duplicate the same disk directory path structure
(e.g., must havea Scr i pt s subdirectory underneath the home login directory) and must
have afilecalled . cshrc. t st underneath the Scri pt s subdirectory. This approach is
problematic in the runtime environment because the login home directory is different for
every operator, and leads to difficulties in sharing environment settings.

Note: Developers should minimize the use of environment variables
whenever possible. The amount of memory the operating system
makes available to store environment variables is limited and is
therefore a scare system resource. Also, developers should bear in
mind that environment variables with shorter names require less
memory to store than environment variables with longer names.

5.2.1 Segment Subdirectories

DIl compliance mandates specific subdirectories and files underneath a segment directory.
These are shown in Figure 5-2 for a general segment. The precise subdirectories and files
required depend upon the segment type. For example, a Scri pts subdirectory is
required for account group segments. The Scr i pt s subdirectory on a Unix system will
normally contain, asaminimum, . cshr ¢ and . | ogi n scripts. These serve as atemplate
for establishing a basic runtime environment. For software segments, the Scri pts
subdirectory contains environment extension files.

Some of the subdirectories shown in Figure 5-2 are required only for segment submission
and are not delivered to an operational site. Runtime subdirectories normally required are
asfollows:

dat a subdirectory for static data items, such as menu items or help files,
that are unigue to the segment but will be the same for all userson
all workstations

bi n executable programs for the segment

5-14 January 1997 DIl COE I&RTS: Rev 3.0

Disk Directory Layout

Scripts directory containing script files (Thisis usualy not required for NT
platforms but, if required, the directory contains “batch” files.)

SegDescri p directory containing segment descriptor files.

SegDescrip Scripts data bin *man | |*include| || *lib | |*Integ

lingall 1DBS files ’src IntgNotes
SOutput
I I I I

Icons| |Menus| |keytab | | fonts| |app-defaults| | Help TestSuite

* Required for segmentswith published APIs

* Required for segment submission

1 For Database segmentsonly

2 Recommended location for sour ce code during development,
Required location for source code delivered to DISA.

Figure 5-2: Segment Directory Structure

The descriptor directory SegDescr i p is always required for every segment. Its contents
are defined in later subsections. Segment developers may use arbitrary disk file structures
during the development phase, but segments shall conform to the structure shown prior to
submitting a segment to DISA. It is a violation of the COE to use a different subdirectory
name to fulfill the same purpose as any subdirectory shown as a required subdirectory, or
to use a different runtime directory structure than that shown in Figure 5-2.

For example, the subdirectory sr ¢ is a recommended directory for the location of source
code during software development. Developers are free to use this name, or any other
structure convenient for their development practices. They must, however, use this
directory name for source code delivered to the DISA SSA. bin is a required
subdirectory and shall not be used for any purpose other than that stated in the I&RTS

The distinction between the Scr i pt s subdirectory and the bi n subdirectory is subtle.
Files in the Scri pts subdirectory are used to establish attributes of the runtime
environment. Scripts are used here in the sense of traditional Unix, X Windows, or Motif
files(. cshrc,. 1 ogi n, etc.) that are usualy referred to only during the login process or
in the establishment of a separate runtime session. Files of this nature are located in the

DIl COE I&RTS: Rev 3.0 January 1997 5-15

Disk Directory Layout

Scri pt s subdirectory. Executable files may be created as a result of compiling a
program or may be written as a shell. Files of this nature implement executable features of
the segment and are located in the bi n subdirectory.

Subdirectoriesi nstal | and DBS fil es are only used for database segments. Their
use is described below in subsection 5.4.5

Subdirectories underneath dat a depend upon whether or not the segment has menu or
icon files, uses DCE (subdirectory keyt ab), or needs additional fonts or app-defaults.
During segment installation (for Unix platforms) special processing is performed on files
within the app- def aul t s and f ont s subdirectories. See subsection 5.4.4 below for
more details.

The remaining subdirectories shown in Figure 5-2, except for sr ¢, are required in order
to submit a segment to DISA asfollows:

i ncl ude subdirectory containing C/C++ header files or Ada package definition
filesfor public APIs

lib subdirectory containing object code libraries for public APIs
man subdirectory containing Unix “man” pages for public APIs
| nt eg subdirectory containing items required in the integration process

Segments which do not contain public APIs need not submit i ncl ude, |i b, or man
subdirectories. For those segments with public APIs, private APIs are not allowed in the
i ncl ude subdirectory, nor are private libraries allowed inthel i b subdirectory.

The | nt eg subdirectory serves as a convenient repository for information that needs to
be communicated from the developer to the integrator. The file VSQut put is required
for al segments submitted. The subdirectory Test Sui t e is required for al segments
which submit public APIs and is to contain source code for a program(s) which exercises
all APIs submitted. The file | nt gNot es is required for al segments submitted and
contains a brief description of why the segment is being submitted (new features, bug
fixes, etc.). It also contains any special instructions that need to be communicated to the
integrator for proper segment integration and installation.

5.2.2 USERS Subdirectories

The COE establishes individual operator login accounts and provides a separate
subdirectory on the disk for storing operator-specific dataitems. The structure underneath
this directory is created and managed automatically as accounts are added and deleted by
the Security Administrator software. Developers who require access to any file maintained
here (last profile selected, location of operator preferences files, etc.) shal use COE-
provided APIsto access them and not rely upon a particular directory or file structure.

5-16 January 1997 DIl COE I&RTS: Rev 3.0

Disk Directory Layout

All users with valid accounts will have a subdirectory underneath / h/ USERS. The
subdirectory name will have the same name as the login account name. As shown in Figure
5-3, operator accounts may be global or local in scope. A local account is workstation-
specific, whereas global accounts are available from any workstation on the LAN.

USERS
I
I I
local global
(@) (@)
Oper2 OperB
Oper3 OperC
I I
data data
I I
Prefs Prefs

Figure 5-3: Operator Directory Structure

The subdirectory Prefs underneath the operator's data directory is used to store
segment-specific operator preferences. DIl compliance requires that segments store all
operator preference data here. A segment is responsible for creating its own subdirectory
(with the same name as the segment’s assigned directory) and any required files when the
segment first references the preferences data. The exact pathname for the Prefs
subdirectory will change each time a different operator logs in, thus segment software
shall use functions from the Preferences Toolkit APIs to retrieve the correct pathname for
the currently active operator account.

Account group segments define the environment variables USER _HOVE and USER_DATA
to point to the correct operator directories. For the example in Figure 5-3, the following
assignments would be made when the user whose login account name is Oper A logsin:

USER_HOVE
USER_DATA

/ h/ USERS/ gl obal / Oper A
/ h/ USERS/ gl obal / Oper A/ dat a

Note that USER_HQOVE is not defined to be / h/ USERS/ gl obal / Oper A/ Scri pts
which is the login home directory.

Segments, such as the Executive Manager, may need to reference menu and icon files for
the operator’s currently-defined profile. However, the directory location for these files is

DIl COE I&RTS: Rev 3.0 January 1997 5-17

Disk Directory Layout

profile-dependent and will change during a login session if the operator changes profiles.
Segments must use functions contained in the Preferences Toolkit APIs to determine the
current profile. The environment variable USER_PROFI LE is set by the account group
segment during login, but segments must use APIs from the Preferences Toolkit to access
files or directories related to individual operators, or to determine the current user profile.

DIl compliance requires adherence to the following:

Segments shall create subdirectories as needed under the operator's Prefs
subdirectory for storing operator-specific data.

Segments must work in an environment in which accounts are created and deleted.
This requires that a segment create and initialize missing operator-specific data files.

Account group segments shall set the environment variables USER HOVE,
USER_DATA, and USER_PROFI LE. (See footnote below. Account groups must still
set USER_PRCFI LE in the interim to support legacy usage.) No other segment shall
set or ater these environment variables.

Segments shall determine the operator’s directory and profile exclusively through the
Preferences Toolkit APIs or the environment variables USER_HOVE, USER _DATA,
and USER_PROFI LE.

5.2.3 Developer Subdirectories

Software for the runtime environment is obtained by loading the desired mission-
application segments and the required COE components. But the development
environment is provided separately as a Developer’s Toolkit because it is not delivered to,
nor required at, an operational site. The Developer’s Toolkit includes object code libraries,
header files which define the public APIs, and various tools. By convention, tools are
loaded underneath the / h/ TOOLS subdirectory shown in Figure 5-1. This serves as a
convenient directory for software contributed by the community for general development
use.

5.2.4 Tes Ingtallation Subdirectories

The COE provides the ahbility for sites to temporarily install a segment on a workstation to
test it before putting it on other workstations on the LAN. This is accomplished by the
CCETest I nstal | tool, while remova of the test segment is accomplished by the
COETest Renove tool (see Appendix C). These tools create temporary directories for
storing the test segment and, if the segment already exists, COETest | nst al I moves
the old segment to a safe location so that it can be restored by COETest Renove once

19 USER PROFI LE is preserved for backwards compatibility only. The COE allows there to be multiple
active profiles so that an environment variable may not be the most appropriate way to determine the
current user profile. Developers must not directly access this environment variable because its use may be
phased out in a future release.

5-18 January 1997 DIl COE I&RTS: Rev 3.0

Disk Directory Layout

the test is completed. Developers do not need to do anything specia to their segment to
enable this capahility. It is handled automatically by the tools.

5.2.5 Application-Server Subdirectories

To assist Site administrators, the COE provides support for creating application servers.™
This is done by the tools COECr eat eAS, COEConnect AS, and COERenpveAS (see
Appendix C). The COECr eat eAS tool allows segments to be loaded onto a workstation
that is to be configured as an application server. The application server may contain
segments for mixed hardware types (e.g., HP, Solaris, DEC, IBM, SGlI). Figure 5-4 shows
the directory structure maintained on the application server.

The tool COERenoveAS removes segments from an application sever. The tool
CCOEConnect AS connects a client workstation to an application sever. It aso alows
“dynamic” loading of segments as explained in Appendix C.

The COE does not support installation of multiple versions on the application server, for
the same platform and operating system version. This could otherwise lead to problems if
two different versions of a segment for the same platform type were executed at the same
time. Temporary testing of a new segment verson must be performed using the
CCETest I nst al | and COETest Renove tools described in subsection 5.2.4

Developers do not need to do anything special to their segments to enable the application-
server capability. It is handled automatically by the tools.

Platform4
Platform3
Platform2

Platform1

COTS| | AcctGrps| | COE | | data | | Segl Seg2

Figure 5-4: Applications Server

1 Application servers are supported for Unix platforms only in this |&RTS release.

DIl COE I&RTS: Rev 3.0 January 1997 5-19

Segment Pr efixes and Reserved Symbols

5.3 Segment Prefixes and Reserved Symbols

Each segment is assigned a unique subdirectory underneath / h called the segment’s
assigned directory. The assigned directory serves to uniquely identify each segment, but it
is too cumbersome for use in naming public symbols. Therefore, each segment is also
assigned a 1-6 character alphanumeric string called the segment prefix. The segment prefix
is used for naming environment variables and things such as public APIs and public
libraries where naming conflicts with other segments must be avoided. All segments shall
prefix their environment variables with segpr ef i x_ where segprefix is the segment’s
assigned prefix. For example, the Security Administrator account group segment is
assigned the segment prefix SSO. All environment variables for this segment are therefore
prefixed with the string “SSO _".

The segment prefix is aso used to uniquely name executables and shared libraries. All
COE-component segments shall use the segment prefix to name executables and it is
strongly recommended that all segments follow the same convention. For example, a
proper executable for the Security Administrator account group is SSOSet Cl assi f . A
properly named shared library would be SSCSanpl eLi b. | i b. This approach simplifies
the task of determining the files that go with each segment and reduces the probability of
naming conflicts.

Note: Use the segment prefix inside application code in situations where
it is important to distinguish one segment from another. For
example, when audit information is written to the security audit
log, the segment prefix is also written to the audit log to allow
determination of which application module generated the audited
event. The same advice applies to all audit logs, including those
maintained by the operating system or a DBMS.

It is sometimes convenient for segments to share the same segment prefix. Thisis true for
aggregate segments or for segments produced by the same contractor. The COE allows
segments to share the same segment prefix; however, the burden for avoiding naming
conflictsis placed on the segment developer.

Note: This means that segment prefixes are not guaranteed to be unique
and therefore cannot be used to uniquely identify a segment. Each
segment shall have a uniquely assigned directory and segment
name. Therefore, the name or directory in combination can be
used to uniquely identify a segment. There are Situations where it
is more convenient to specify a segment’s assigned directory
rather than its name, such as in COEFi ndSeg, because the
directory name is typically shorter than the segment name and this
fact can be useful in speeding up character string comparisons in
segment searches. Furthermore, because the segment directory
will not have embedded blanks but the segment name may, the
segment name will not necessarily be the same as the assigned
directory name.

5-20 January 1997 DIl COE I&RTS: Rev 3.0

Segment Pr efixes and Reserved Symbols

The segment prefixes shown in Table 5-1 below are reserved.

Segment Prefix Usage

CBI F Character-Based |/F account group segment

CDE Common Desktop Environment segment

COE Common Operating Environment segment

DBA Database Administrator account group segment

DCE Distributed computing environment segment

DI | Defense Information I nfrastructure segment

ECEDI Electronic Commerce/Electronic Data I nterchange
segment

ECPN Electronic Commerce Processing Node segment

EM Executive Manager segment

GCCS Global Command and Control System segment

GCSS Global Command Support System segment

| NFRMX Informix COTS segment

JCALS Joint Computer-Aided Acquisition and Logistics
Support segment

JMCI' S Joint Maritime Command Information System
segment

JMIK Joint Mapping Toolkit segment

MOTI F Motif

NI PS Navy NIPS segment

NT Generic NT segment

ORACLE Oracle COTS segment

0SS Navy OSS segment

SA System Administrator account group segment

SCO SCO-Unix segment

SSO Security Administrator account group segment

SYBASE Sybase COTS segment

TI M5 Navy TIMS segment

uB Navy Unified Build segment

UNI X Unix operating system

USER prefix for operator-specific items

WN generic Windows segment

W N95 Windows 95 segment

W NNT Windows NT segment for 80x86 platforms

XW N X Windows

Table 5-1: Reserved Segment Prefixes

The COE sets five environment variables that must not be confused with the USER prefix
or the segment home environment variable.

DIl COE I&RTS: Rev 3.0

January 1997

5-21

Segment Pr efixes and Reserved Symbols

The HOVE environment variable is set by the operating system to be the login
directory; that is, the login directory as contained in the Unix / et ¢/ passwd file.
This will normally point to a Scri pts subdirectory while the segment “home”
environment variable (segpr ef i x_HOVE) isone level up from HOVE.

The USER environment variable is set by the operating system to be the login account
name and does not refer to a directory as does the USER prefix. Thus, USER_HOVE
will be/ h/ USERS/ $USER.

The environment variables LOG_NAME, LOGNANME, and LOG N_NANME are equivalent
to the USER environment variable™, but are not always present on every system.

The COE aso includes a number of predefined environment variables that are required by
Unix, NT, X Windows, and other COTS software. These environment variables are either
set automatically by the operating system or they must be set by an account group
segment. Other segments shall not alter these environment variables except as permitted
by environment extension files (e.g., extending the pat h environment variable).

Table 5-2 below lists various important environment variables that is set by the applicable
account group, the parent COE-component segment, or the COE installation tools.

The COE sets environment variables MACHI NE_CPU and MACHI NE_CS to define the
hardware and operating system being used. This alows scripts and descriptors to perform
operations that are dependent on the hardware or operating system. Table 5-3" below lists
the possible values set by the COE which either may be used as constants in #i f def

constructs within descriptor files or as possible values for the appropriate environment
variable (e.g., MACHI NE_CPU).

Note that the environment variables (e.g., MACHI NE_CPU) will have one and only one
value, but severa constants may be defined for use within the descriptor files. For
example, if the hardware platform is an HP715 running HP-UX 9.01, the MACHI NE_CPU
environment variable will be set to HP715, MACHI NE_OS will be set to HPUX, while the
constants HP, HP715, HPUX will be defined for use in descriptors.

12 USERiis preserved for backwards compatibility with legacy pre-POSIX systems. LOGNAME is the proper
POSIX equivalent.

13 This list of constants will be updated as new platforms are supported. Refer to the DIl COE Release
Notes and Version Description documents for details as new platforms are supported.

5-22 January 1997 DIl COE I&RTS: Rev 3.0

Segment Pr efixes and Reserved Symbols

Environment Variable | Usage

COE_SYS_NAME string containing system name (e.g., “GCCS")
"COE_TMPSPACE location of temporary space

"DATA DI R / h/ dat a

DI SPLAY current display surface (Unix only)

HOVE user’s login directory

I NSTALL_DI R absolute pathname to where segment was installed

LD LI BRARY_PATH

default location of shared X and Motif libraries
(Unix only)

"LOGNAME user’ s login account name

"LOG_NAMVE user’s login account name

"LOG N_NAVE user’s login account name

"MACH NE_CPU CPU type derived fromunane -m

"MACH NE_CS Operating system derived fromunane -s -r

pat h list of paths to search to find an executable

SHELL shell used (e.g., /bin/csh) (Unix only)

*SYSTEM ROOT absolute pathname to where Windows isinstalled
(applicable to PC-based COE only)

TERM terminal type (Unix only)

"TVPDI R location of the system-defined temporary directory

TZ time zone information (Unix only)

USER user’s login account name

USER_DATA user’s data directory under / h/ USERS/ | ocal
or / h/ USERS/ gl obal

USER_HOVE user’s home directory under / h/ USERS/ | ocal
or / h/ USERS/ gl obal

USER_PROFI LE user’s current profile under
/ h/ USERS/ | ocal / Profil es or
/ h/ USERS/ gl obal / Profil es

"XAPPLRESDI R / h/ dat a/ app- def aul t's (Unix only)

"XENVI RONVENT

/ h/ dat a/ app- def aul t s/ COEBaseEnv
(Unix only)

"XFONTSDI R

/ h/ dat a/ f ont s (Unix only)

Legend: ~ Environment variables set by the parent COE-component

segmen.

* Environment variables set by the COE ingtallation tools.
These are defined only at installation time.

All remaining environment variables are set by the applicable
account group segment.

Table 5-2: COE-Related Environment Variables

DIl COE I&RTS: Rev 3.0

January 1997

Segment Pr efixes and Reserved Symbols

MACHINE CPU Environment Variable

Constant Platformsfor Which Defined
HP700 HP 700 series workstations
HP712 HP712 workstations
HP715 HP 715 workstations
HP750 HP 750 workstations
HP755 HP 755 workstations
PC386 Intel 80386 workstations
PC486 Intel 80486 workstations
PENTIUM Intel Pentium workstations
SPARC Sun Sparc workstations
SUN4 Sun 4 workstations

MACHINE OS Environment Variable

Constant Platformsfor Which Defined
HPUX al HP-UX workstations

NT al NT workstations

SOL al Solaris workstations
WIN95 all Windows 95 platforms

M iscellaneous Constants

Constant Platform for Which Defined

HP al HP platforms, regardless of OS

PC all 80x86 platforms, regardless of OS
SPARC al Sun Sparc workstations, regardless of OS

Table 5-3: Platform and Operating System Constants

5-24 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

5.4 Segment Typesand Attributes

Segment types and attributes were briefly introduced at the beginning of this chapter. The
present subsection describes segment types and attributes in more detail. Segments are the
cornerstone of the COE approach, and proper determination of their type and associated
attributes determines how the COE handles them. Developers have considerable freedom
in building segments; however, there are some important considerations regarding them.

Creation of an account group segment requires prior approval by the Chief Engineer.
Most account groups are predefined by the COE itself to establish DIl-compliant
runtime environments. System designers will typically add an operator account group
that establishes the basic runtime environment for their system. Other developers will
not normally create account group segments.

Creation of a COE-component segment requires prior approval by the DIl COE Chief
Engineer.

All COTS products shall be packaged as individual COTS segments, unless approved
by the DIl COE Chief Engineer. This requirement is mandated to make it easier to
handle COTS licenses, and to ensure that a single version of a COTS product is in use.
Dependencies on COTS product versons must be identified and coordinated with
DISA to ensure that the proper version is supported by the COE.

Segments shall not modify any file that lies outside the segment’s directory.
Community files may be modified only through public APIs or through requests made
to the COE installation tools.

Segment types are identified by the $TYPE keyword in the SegName descriptor.
Segment attributes are also specified in the $TYPE keyword by the presence of an
optional attribute parameter. See subsection 5.5.33 below for details.

5.4.1 COTS Segment Types

The COTS segment type is used to describe the ingtallation of COTS products. It is
preferable to structure a COTS product as a software segment, if at all possible, because it
provides more control over the installation and placement of the COTS product.
However, this is sometimes not possible because where COTS products will be loaded,
what environment extensions are required, etc. are often very vendor-specific.

The COE mugt retain segment information about all segments, including COTS products.
The segment descriptor information for all COTS segments is located underneath the
directory / h/ COTS as shown in Figure 5-5. COTS software is not necessarily actually
stored in the directory / h/ COTS. Frequently only the segment descriptor information is
stored there because the actual location of COTS products is often spread across several
subdirectories (suchas/ usr,/usr/ i b/ X11,and/ et c).

DIl COE I&RTS: Rev 3.0 January 1997 5-25

Segment Types and Attributes

Using Unix as the example, Figure 5-5 shows the segment descriptor information for the
operating system (UNI X), the X Windows environment (XW ndows), the Motif window
manager and libraries (Mot i f), and the Common Desktop Environment software (CDE).
These four subdirectories, along with the actual COTS software, are loaded with the
kernel COE. The example in Figure 5-5 also shows that the DCE COTS product has been

installed.

COTS

UNIX XWindows M otif DCE CDE

SegDescrip| |SegDescrip| |SegDescrip| |SegDescrip| [SegDescrip

Figure 5-5: COTSDirectory Structure

COTS products sometimes have very specific requirements as to the location of files
within the product. The general approach to such segments is to create a temporary
segment structure in which to store the COTS product, copy the COTS files to their
required location during installation, and then copy the segment descriptor information to
[h/ COTS. It is the responsibility of the Post | nst al | script (see below) to copy the
COTS files to their appropriate directories and to perform any other required initialization
steps. The installation software handles moving the segment descriptor information to the
standard location, / h/ COTS.

For example, assume a COTS product called Sanpl eCot s is to be installed which
requires loading a series of filesinto / et ¢ (filesf 1, f2, and f 3), / usr/ | ocal (files
f4andf5),and/usr/lib (filesf6,f7,f8,and f9). A segment directory structure
can be set up in whatever manner is most convenient. Figure 5-6 shows one possible
solution. The installation software will load the segment Sanpl eCot s wherever there is
room on the disk and will set the environment variable | NSTALL_DI R to the absolute
pathname to where Sanpl eCot s was loaded. The Post | nstal |l script for this
example must recursively copy the subdirectories et ¢ and usr from | NSTALL_DI R to
/et c and / usr . The installation software will copy the segment descriptor information
to/ h/ COTS/ Sanpl eCot s and then delete all files underneath | NSTALL_DI R.

As an dternative, the COE alows a segment to specify exactly where it must be loaded.
This is done with the $HOVE_DI R directive described in subsection 5.5 below. This
reduces the need to copy files from one directory to another, and eliminates the temporary
disk space required during installation (e.g., to temporarily store the segment when it is
read from tape, then copy it to its new location, then delete the temporary location).

5-26 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

SampleCots
I I
etc usr SegDescrip
f1 | |
f2 ;
3 local lib
f4 f6
f5 f7
f8
f9

Figure 5-6: Example COTS Segment Structure

The segment descriptor file Fi | esLi st (see subsection 5.5.14) is used to document
where a COTS product was installed. The Fi | esLi st descriptor for this example is

$PATH / et c
$FI LES
f1

f2

f3
$PATH: / usr
$FI LES
|local/f4
| ocal / f5
lib/f6
lib/f7
libl/f8
lib/f9

To summarize the COTS segment type:

COTS products should be installed as a software segment type if possible.

The COTS segment’s Post | nst al | script is responsible for copying files to their
required location. The Post | nst al | script must ensure that enough space exists.

The installation software places the segment descriptor information underneath
[h/ COTS/ SegDi r where SegDir is the segment directory name chosen for the
temporary segment structure (Sanpl eCot s in the example above).

The ingtallation software automatically deletes the temporary segment structure after
installation is complete.

DIl COE I&RTS: Rev 3.0 January 1997 5-27

Segment Types and Attributes

COTS segments shall document what files are loaded and their location in the
Fi | esLi st segment descriptor file.

Note: Developers should normally not include the vendor name in the
segment name because this makes the segment vendor-specific.
Other segments which then depend upon the COTS product are
affected because they then become vendor-specific as well. For
example, a segment name such as “DCE” is preferable to
“Vendor A DCE” because segments may specify a dependency on
a segment whose name is “ DCE” rather than “ Vendor A DCE.”
This is especidly the case when the COTS product is the
implementation of an industry standard. However, it is sometimes
advisable to include the vendor name because the product truly is
vendor-proprietary. Thisis typicaly the case with an RDBMS.

5.4.2 Account Group Segment Types

An account group segment is a template for establishing a basic runtime environment
context that other segments may extend in a controlled fashion. An account group
segment determines

the processes to launch,
the order in which to launch processes, and
the required environment script files (. cshrc, . | ogi n, etc.).

Account groups may also contain executables and data in the subdirectories identified in
Figure 5-2.

The COE provides severa predefined account groups. They are located underneath
/ h/ Acct G ps shown in Figure 5-1. Important predefined account groups include the
following:

Charl F account group for character-based interfaces

DBAdmM account group for database administrators

SecAdm account group for security administrators

SysAdm account group for system administrators
In addition to these account groups, COE-based system designers will generally create
their own account group for normal operator accounts (GCCS for the Global Command

and Control System, GCSS for the Global Command Support System, ECPN for the
Electronic Commerce Processing Node system, etc.). They will include Char | F if the

5-28 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

system supports a character-based interface and may include other account groups to suit
system mission requirements.

Figure 5-7 shows how the Unix System Administrator account group is structured. It
demonstrates what account groups are for and how they are used in building a COE-based
system.

bi n Subdirectory

Account groups utilize COE executables, located underneath / h/ COE/ bi n, but will
usualy include additional account group specific programs. These are located in the
account group’s bi n subdirectory. DIl compliance requires that executables within this
subdirectory use the segment prefix to avoid potential naming conflicts with other

executables.

AcctGrps
I
Scripts bin SegDescrip data
.chsre | lel
cshre.dev Menus Icons Help
.cshrc.SA
Jogin
RunSA

Figure 5-7: Example Account Group Directory Structure

dat a Subdirectory

Segment data specific to the System Administrator account group is located in the dat a
subdirectory. The Menus subdirectory contains menu files that have menu entries for all
options available from the basic System Administrator application. The segment
installation software may modify files contained here to add other menu options. Account
group menu files are used as templates from which profiles are created by including or
excluding desired menu items and execution permissions. The | cons subdirectory is
analogous, but definesicons for use by the desktop for launching applications.

Help files are located underneath the dat a/ Hel p subdirectory and identified through the
Hel p segment descriptor. Refer to subsection 5.5.16 below for more details on this
segment descriptor.

DIl COE I&RTS: Rev 3.0 January 1997 5-29

Segment Types and Attributes

Scri pt s Subdirectory

A Unix account group segment will usually contain at least the following two scripts to
establish the runtime environment:

.cshrc define environment variables
.login define terminal characteristics

Precise contents of these files is application-dependent. Other segments may be loaded to
extend the environment established by the account group. This is done through
environment extension files. DIll-compliant account group segments shall name
environment extension filesin the form

scri pt nane. segprefix

where scriptname is the environment file to be extended and segprefix is the segment
prefix. For the example shown in Figure 5-7, the environment extension files are:

.cshrc. SA extensonsto the. cshr c file
.l ogi n. SA extensonsto the. | ogi n file

Extension of the . | ogi n fileis seldom required.

Environment extension files permit COE installation software to provide segment-specific
environment modifications. A segment uses the descriptor file ReqrdScri pts (see
below) to indicate which environment file to extend and the installation tools modify the
proper file within the account group segment.

For example, suppose the installation tools have loaded a segment underneath / h/ SAGCpt
and the SACpt segment has an environment extension file named . cshr c. SAQpt in the
segment’s Scr i pt s subdirectory. The installation tools will include the new environment
settings by inserting the following statements in the account group’sfile. cshr c. SA:

if (-e /h/SAOpt/ Scripts/.cshrc. SAOpt) then
source / h/ SAOpt/ Scri pts/.cshrc. SAOpt
endi f

The installation tools automatically remove these statements from . cshrc. SA if the
segment SAOpt is deleted.

Account group segment developer’s shall ensure that environment extension files are
included and accounted for in the appropriate account group segment’s scripts. For
example, the. cshr c file shown in Figure 5-7 includes the following statements

if (-e $SA HOVE/ Scri pts/.cshrc. SA) then
source $SA HOVE/ Scri pts/.cshrc. SA
endi f

5-30 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

to account for . cshr ¢ extensons. Also note that the sour ce command shall be of the
form

source $SA HOVE/ Scri pts/.cshrc. SA

rather than

source $USER HOVE/ Scri pts/.cshrc. SA

The COE-mandated form ensures a single copy of the environment extension file, updated
and maintained by the installation software.

The file . cshrc. dev shown in Figure 5-7 relates to the software development
environment. It is not a required file, but is described here as an example of how the
development environment can be accommodated, yet kept separate from the runtime
environment. In the example shown, developer preferences such as alias commands are
included in. cshr c. dev. These preferences must not be included as part of the runtime
environment. A technique such as

if ($?DEVELOPER) then
source $SA HOVE/ Scri pts/.cshrc. dev
endi f

withinthe . cshr c fileis required to achieve separation of the development environment
from the runtime environment. This technique will not work for certain files, such as
. manT ¢, because they do not support conditional statements.

Account groups must include the base environment established by the COE.
Subsection 5.4.8 below describes the COE-component segments in more detail. The
. ¢shr c filein Figure 5-7 includes the base COE environment with the statements

if (-e /h/COE/ Scripts/.cshrc. COE) then
source /h/ COE/ Scripts/.cshrc. COE
endi f

The remaining files in Figure 5-7 contain similar statements to include other COE
environmental settings.

Account groups must also provide a script or program which launches the application.
Thisis the file named RunSA shown in Figure 5-7. DIl compliance requires this file to be
located underneath the Scr i pt s subdirectory.*

To summarize compliance requirements for account groups:

4 This program is required for backwards compatibility and as an aid to integrators and testers. It may be
phased out in a future release because the program is not necessarily used in the operational system,
depending upon the characteristics of the system desktop.

DIl COE I&RTS: Rev 3.0 January 1997 5-31

Segment Types and Attributes

Account group segments shall provide environment extension files of the form
scri pt pnamne. segpr ef i x, where scriptname is the name of the script which sets
the environment, and segprefix is the account group’s segment prefix. This must be
done for any files that other segments may extend (e.g., . cshr c. SA for the SysAdm
account group).

Account group executables shall use the segment prefix to avoid naming conflicts.

Account group segments shall not include the developer environment as part of the
runtime environment.

Account group segments shall provide a single program or script with the name
Runsegpr ef i x, where segprefix is the segment prefix, to initiate execution of the
account group’s application. This executable shall be located in the account group
segment’s Scr i pt s subdirectory.

Account group segments shall automatically include environment settings established
in/ h/ COE/ Scri pts.

Segment developers shall not modify account group files except through use of the
installation software.

Segment developers shal not override environmental settings established by the
account group. Segments may use environment extension files to expand the
environmental settings.

5.4.3 Software Segment Types

Software segments add functionality to one or more account groups. The account
group(s) to which the software segment applies is called the affected account group(s).
The directory structure for a software segment was presented in Figure 5-2.

Software segments frequently need to extend the runtime environment, add new menus
and icons to the desktop, and include new executables in the search path. Environment
extension files are located underneath the software segment’s Scri pt s subdirectory.
The RegrdScri pt s segment descriptor file (see below) indicates which environment
files are to be extended.

Software segments provide additional menu and icon files underneath the segment’s
dat a/ Menus and dat a/ | cons subdirectories respectively. The segment descriptor
files Menus and | cons (see below) are used to describe where the new items are to
appear on the desktop. At installation time, the menu and icon files from al contributing
segments are added to the affected account group. This then serves as a master template

5-32 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

of al possible functions provided within the account group. Profiles are then created by
selectively including or excluding functions within this master template.

Unix segments that provide executables must ensure that the bi n subdirectory is included
in the search path. Thisis accomplished by including a statement of the following formin a
. cshr c extensonfile:

set path =($path $segprefi x_HOVE/ bi n)

The segment shall append its bi n subdirectory, and only its bi n subdirectory, at the end
of the search path, not the beginning. An implied aspect of this requirement is that
segments cannot depend upon a specific loading sequence, other than that a segment will
not be loaded until after all segments it depends upon are loaded. A specific requirement is
that segments shall not insert the current working directory (i.e., “.”) into the search path.

DIl compliance requires the following:

Segments shall not make separate copies of executables from other segments, the
operating system, or other COTS products.

Segments shall use environment extension files as necessary to extend the environment
established by the affected account group.

Segments shall use the segment prefix to name objects whenever conflicts may arise
with other segments.

Segments shall be completely self-contained. Dependencies on, or conflicts with, other
segments shall be specified through the appropriate Requi res or Conflicts
segment descriptor files.

Segments shall not insert the current working directory into the search path for
executables.

(Unix) Segments shall include their bi n subdirectory at the end of the search path, not
at the beginning nor in the middle.

5.4.4 Data Segment Types

Data files are most often created explicitly at runtime by a segment or loaded as part of the
segment itself. However, the ability to load data as a separate segment is useful when there
is classified data, optional data, large amounts of data, or data that may not be releasable
to all communities. The COE supports five categories of data grouped according to data
scope, how the data is accessed, and where the datais located:

DIl COE I&RTS: Rev 3.0 January 1997 5-33

Segment Types and Attributes

Global

Database

L ocal

Segment

Operator

Data in this category means that every workstation, every application,
and every operator on the LAN accesses and uses exactly the same
data. Global data is made available through NFS mount points or
some similar technique. Examples of global data include the track
database and message logs. Global data is located in subdirectories
underneath / h/ dat a/ gl obal .

This category is similar to global data but is used to provide data fill
for a database segment. Examples of this kind of data include
intelligence databases, JOPES data, and TPFDD data. Data is loaded
into the appropriate objects previously created by a database segment
in a database server. Database segments are discussed further in
subsection 5.4.5 below. Data segments for databases are usualy
removed after successfully loading data into the database server.

Local data is limited in scope to an individual workstation. All
workstation users and applications access the same data, but the data
may (and frequently will) differ from one workstation to another.
Examples include overlays and briefing dlides, athough the COE
provides techniques for exporting these to other workstations. Local
dataislocated in subdirectories underneath / h/ dat a/ | ocal .

Segment data is local to a workstation, but is managed and accessed
by a gingle software segment. This data is located under the
segment’sdat a subdirectory (e.g., SegDi r / dat a where SegDir is
the assigned directory) and is typically static data used for segment
initialization.

Datain this category is specific to an operator and is the most limited
in scope. Typical examples include preferences for map colors,
location of various windows, and font size. Operator datais stored in
adat a subdirectory underneath / h/ USERS created for the operator
when the operator login account is created, as described in
subsection 5.2.2.

There are some important considerations with respect to these data categories:

Datais not necessarily available to an operator or process even if the data scope would
otherwise permit it. Discretionary access controls limit access based upon the security
policy of the system.

In some cases, data that could be global is replicated on every workstation to improve
system performance. For example, World Vector Shoreline data is identical for
everyone on the LAN, and hence meets the criteria for the global data category.
However, for efficiency, this data may be replicated on each workstation which
requires maps and is thus considered local.

5-34

January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

Distinction is made between segment data and local data because it affects where the
data is stored on the disk. Local data for al segments is stored in a single place to
make it easier for doing data backups. Because segment data is normally static, it does
not usually need to be archived and remains with the segment.

Segment data created at runtime or loaded as part of the segment does not require any
special consideration by the COE. The remainder of this subsection will deal with the COE
requirements for local and global data, and then present an example of how a data segment
is structured for local, global, and segment scope.

gl obal and | ocal Subdirectories

Figure 5-8 shows the directory structure for global and loca data. The COE runtime
environment sets the environment variable DATA DI R to point to / h/ dat a. Segments
shall use this environment variable to reference global or local data. The segment which
owns the local or global data is responsible for creating and managing its data
subdirectories underneath $DATA DI R/ | ocal and $DATA DI R/ gl obal . Assuming
the segment’ s assigned directory is SegDir, the segment shall create a subdirectory of the
form SegDi r/ dat a under $DATA DI R/ | ocal and/or $DATA DI R/ gl obal as

appropriate.

data
local global fonts app-defaults
I I [| "Registry
COE uB JCALS | .. |GSORTS]| | JCALS
data| |data data data data

*NT only

Figure 5-8: Data Directory Structure

For example, suppose a segment that does ASW planning is located underneath / h/ ASW
and it will create both global and local data. Then the ASW segment must create the
subdirectory $DATA DI R/ | ocal / ASW dat a for loca data and the subdirectory
$DATA DI R/ gl obal / ASW dat a for global data.

DIl COE I&RTS: Rev 3.0 January 1997 5-35

Segment Types and Attributes

The COE mandates that local and globa data be structured in this fashion for the
following reasons:

Centralizing data makes it easier to archive and restore. A simple data archive/restore
utility can be created without needing to know how many segments are loaded in the
system.

Separating data from software makes it simple to load the software without
destructively overwriting existing data. This is especiadly important as segments are
upgraded.

Collecting al global data under a single directory reduces the number of NFS-type
mount points and improves overall network performance.

Organizing data into a standard structure simplifies training and smplifies
determination of what data is loaded in the system.

f ont s and app- def aul t s Subdirectories (Unix)

Figure 5-8 shows two additional subdirectories, f ont s and app- def aul t s. These are
applicable to Unix only. The COE sets environment variables XFONTSDI R and
XAPPLRESDI R to point to these subdirectories. Their purpose is to contain additiona
fonts (such as NTDS symbology) or application resource files that are not provided by the
standard X/Motif distribution. It is a violation of the COE for a segment to overwrite or
add files to the standard X/Motif distribution.

During instalation, the installation tools look for subdirectories dat a/fonts and
dat a/ app- def aul t s underneath the segment’s directory. Files contained within these
subdirectories must use the segment prefix to guarantee unique names. The installation
tools creates a symbolic link underneath the directory $DATA DI R/ f ont s to every file
in the segment’s dat a/ f ont s subdirectory and removes the links when the segment is
deinstalled. Similarly, links are created for files underneath the segment’s
dat a/ app- def aul t s subdirectory.

Creating a data segment requires additional considerations. A segment structure is created
for the data and the installation tools logically insert the data underneath $DATA DI R for
global and local scope, but underneath the parent segment for segment data. This is best
described through use of an example.

Assume a mine countermeasures decision aid has an assigned directory of M neTDA.
Assume that a separate data segment is to contain parametric data on floating, proximity,
and land mines for the decision aid. Figure 5-9 shows the appropriate directory structure
for the data segment. Further assume that when installed, the decison aid is located
underneath / h/ M neTDA. Consider how the instalation tools handle the mine data
segment for global, local, and segment scope.

5-36 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

MinesData

data SegDescrip

Floating Proximity Land

Figure 5-9: Example Data Segment Structure

Global Scope Example

The Dat a descriptor file (see below) describes the data scope. For a global data segment,
the instalation tools will load the mine data underneath the directory
$DATA DI R/ gl obal / M nesDat a. If there is insufficient space to load the segment
underneath $DATA DI R/ gl obal , the install tools will report an error and abort. The
mine TDA can thus reference global proximity-mine data as being underneath the
directory $DATA DI R/ gl obal / M nesDat a/ data/ Proxi m ty.

L ocal Scope Example

For alocal data segment, the installation tools will load the mine data on the first available
disk partition. The instalation tools will then create a symbolic link from
$DATA DI R/ | ocal / M nesDat a/ dat a to wherever the data segment was actually
loaded. That is, if the data segment is loaded underneath / honme2/ M neDat a, then the
symbolic link will point to the directory / honme2/ M neDat a/ dat a. The mine TDA
can still reference local proximity mine data as being underneath the directory
$DATA DI R/l ocal / M nesDat a/ data/ Proximty.

Segment Scope Example

For segment scope data, the installation tools will load the mine data on the first available
disk partition. A symbolic link is then created from the directory
/ h/ M neTDA/ dat a/ M nesDat a/ dat a to wherever the data segment was actually
loaded. Proximity data can thus be referenced as being underneath the directory
$HOVE DI R/ data/ M nesData/ data/ Proxi mty.

It should now be clear why the COE requires that segments which dynamically create
global or local data do so underneath a directory of the form SegDi r/ dat a, where
SegDir is the name of the segment’s assigned directory. This creates a uniform technique
for locating files whether they are created directly by a segment or loaded as part of a data
segment.

DIl COE I&RTS: Rev 3.0 January 1997 5-37

Segment Types and Attributes

In summary, DIl compliance mandates that:

Segments shall create a data subdirectory underneath $DATA DI R for globa and
loca data if they own global or loca data. The subdirectory created shall be
SegDi r / dat a where SegDir is the name of the segment’s assigned directory.

The parent COE-component segment shall set the environment variable DATA DI R to
point to / h/ dat a.

Segments shall use the environment variable DATA_DI R to reference data underneath
/ h/ dat a.

Segments are responsible for creating the segment’s data subdirectories underneath
/ h/ dat a.

Segments are responsible for handling the case in which a data file is not present or is
corrupted.

(Unix) The parent COE-component segment will set environment variables
XFONTSDI R and XAPPLRESDI R to point to $DATA DI R/ fonts and
$DATA DI R/ app- def aul t s respectively.

(Unix) Segments shall place fonts that need to be accessible via XFONTSDI R in the
segment’s SegDi r/ dat a/ f ont s subdirectory. Files in this subdirectory shal be
named using the segment prefix.

(Unix) Segments shall place application resource files that need to be accessible via
XAPPLRESDI R in the segment’s dat a/ app- def aul t s subdirectory. Files in this
subdirectory shall be named using the segment prefix.

5.4.5 Database Segment Types

The database segment type is similar in concept to the data segment type, except that the
data within a database segment type is managed by a DBMS. Data within a data segment
type is typically organized as a “flat file’” and is typicaly managed by the operating
system’ s file system.

As explained in Chapter 2, a database segment has scope, which is and indication of how
widely the data is shared, not of where the data is located, as is the case with the data
segment type aready described. This scope is indicated in the Database segment
descriptor discussed in subsection 5.5.9. Data within a database segment type may be:

5-38 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

Unique This type of database segment indicates that the data is used by only
one application, or is under the configuration control of the segment
sponsor. Unique data represents no sharing between segments.

Shared This type of database segment indicates that the associated data is
used by multiple mission-application segments or is managed across
multiple database segments. Data is shared, but typicaly only within
one mission domain (e.g., logistics, financial, command and control).

Universal Data in this category represents the most extreme form of
“shareability.” These database segments represent widespread usage
across mission domains, application segments, and require centralized
configuration management.

A database segment contains everything that isto be installed on the database server under
the management of the DBMS and the ownership of the DBA. It contains the scripts to
create a component database and any utilities provided by the developers for the DBA’s
use in installing and filling that particular database. These scripts must include those for
granting and revoking database roles. The only applications permitted in a database
segment are those that support its installation and data fill or that extend DBMS services
for the DBA. Database segments may only be installed on a database server.

When a database segment is installed it must first lay down any scripts, data files, etc. that
will be used to create the database. These scripts are then executed by Post | nstal | to
create the component database. They must first allocate storage to hold the database and
create one or more database accounts to own that database. They then can create the
database within the storage just alocated and fill it with data. Finally, roles are created to
manage access and the roles are given the appropriate privileges.

Developers cannot provide data files for the DBMS as part of the segment. Database files
must be created using the DBMS vendor’s utilities (e.g. Oracle’'s SQL*DBA CREATE
TABLESPACE command) to be correctly incorporated in the DBMS instance.

Figure 5-10 is the same as Figure 5-2 except that it has been shaded to highlight the
directories which are used only for database segments, and directories which are not
required at runtime have been removed. Seg is the segment’s assigned directory. It is
unique and, for a database segment, it must be the same as the name of the database
owner account for the segment’ s data objects.

DIl COE I&RTS: Rev 3.0 January 1997 5-39

Segment Types and Attributes

SegDescrip Scripts data bin install DBS files

Figure 5-10: Database Segment Structure

Scri pt s Subdirectory

The Scri pt s subdirectory shall contain any segment-specific scripts needed to set the
environment for the database installation. This includes environment variables for all
directory paths that are used by the installation scripts. Note that this directory isused asa
place to store ingtalation-related environmental scripts. As with the development
environment, scripts and environmental settings which are used only for installation must
be kept separate from those used by the runtime environment.

SegDescri p Subdirectory

The SegDescri p subdirectory contains the descriptor files necessary to instal the
database segment. Certain information specific to database segments must be incorporated
in the Segl nf o file. The Dat abase descriptor is used to identify information such as
object dependencies that are within the database and therefore cannot be evaluated
without the use of the DBMS. See subsection 5.5.9 for the associated keywords for this
segment descriptor.

The Pr el nst al | descriptor file should prompt the installer to provide the password for
the DBMS' database administrator account. The password prompt must be implemented
via the COEPr onpt Passwd APl (see Appendix C) provided by the COE Services. The
DBA password entered is used later by the scripts that perform the installation of the
database segment.

ThePost | nst al | descriptor fileisused to set up the installation environment, start the
RDBMS if necessary, and invoke the scripts that perform the installation of the database
segment.

For database segments, the Rel easeNot es descriptor should show how applications,
operating system groups, and database roles are associated. Developers should aso
provide the database schema, including its dependencies. In addition to any narrative
information in this file, developers should include comments on their schema, data objects,
and data elements as part of their database build.

5-40 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

The Requi r es descriptor must identify the required RDBMS and version. It must also
identify al dependencies on other database segments.

As with data segments, database segments have a scope associated with them. The scope
is specified in the Dat abase segment descriptor, as explained below in subsection 5.5.9.

i nstal |l Subdirectory

The i nst al | subdirectory contains the scripts to install and then create the database
segment. It includes all of the database definition language (DDL) scripts that create the
database objects for the segment. There are two sets of DDL scripts in this directory. The
first set allocates storage for the database, creates the database owner, and defines the
roles associated with the database segment. It must be executed by a DBA. The second set
creates al database objects (tables, views, indexes, sequences, constraints, triggers, etc.)
that make up the database. This set must be executed by the database owner.

The naming conventions to be used for database definition scripts and the structure of
those scripts are discussed in Chapter 4.

dat a Subdirectory

The dat a subdirectory contains any data files used to load the database. Data fill may
also be provided in a separate data segment if developers wish or need to keep the fill
Separate.

Severa methods for loading data, depending on data Size, are discussed in
subsection 5.8.3.

bi n Subdirectory

The bi n subdirectory contains any scripts or other executables used to load data from the
data files into the database. It may also contain any applications that support unique
database administration requirements for that database segment.

DBS fi |l es Subdirectory

The DBS _fi | es subdirectory contains the DBMS-controlled data files that make up the
storage for the database. This directory is owned by the DBMS, not the segment. The data
files are created during the installation of the segment, normally in the Post | nst al |
process. Directory ownership must be transferred to the DBMS before the data files are
created. Note that this does not allow developers to stipulate disk architecture.

5.4.6 Patch Segment Types

The COE supports the ahbility to install field patches on an installed software base. A patch
segment permits the replacement of one or more individua files, including those of the

DIl COE I&RTS: Rev 3.0 January 1997 5-41

Segment Types and Attributes

operating system. It does not refer to overwriting a portion of afile, as is sometimes done
to patch a section of binary code.

Patches are created in a segment whose directory name is the directory name of the
affected segment followed by a “.”, followed by the letter “P’, followed by the patch
number. Figure 5-11 shows an example patch segment directory structure for applying
patch5 to an ASW segment. The subdirectory SegDescri p is required, but the
remaining subdirectories are patch-dependent. The example illustrates a situation in which
scripts, executables, and data files are to be updated by installation of a single patch
segment.

Scripts bin SegDescrip data

Figure 5-11: Example Patch Directory Structure

The installation software loads patches underneath the affected segment in a subdirectory
called Pat ches. Figure 5-12 shows the result of loading patch 5 from Figure 5-11. This
approach makes it easy to find and identify what patches have been applied to a segment.
It also makes it easy for the installation software to automatically remove patches when a
segment is replaced by a later update. If there is insufficient room to physically load the
patch underneath the Pat ches subdirectory, the patch is loaded on the first available
disk partition. A symbolic link is then created to preserve the logical structure shown. Also
note that when installed, the resulting subdirectory name of the patch for this example is
P5, not ASW P5.

As patches are installed and removed, the descriptor file | nst al | ed in the segment
descriptor directory for the affected segment is updated to reflect what patches are
installed and removed, the date and time, the installer’s name, and the workstation from
which the work was done.

When a patch is installed, it is the patch segment’s responsibility to perform whatever
operations are necessary to replace files. In the example shown, the Post | nst al | script
must copy filesfrom Scri pt s, bi n, and dat a asrequired to update files in the existing
ASW segment.

To facilitate patch removal, the Post | nst al | program may create compressed copies
of files before they are modified and put them underneath the patch subdirectory (e.g., the
ASW Pat ches/ P5 subdirectory in this example). In thisway, a DEI NSTALL descriptor
simply needs to copy the files from the patch subdirectory to their original place and

5-42 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

decompress them to restore the system to the pre-patch state. If the files being replaced
are large, this may require too much disk space to store the original files. In such cases,
the patch segment should be designated as a permanent patch and not make copies. A
patch segment is considered to be permanent if the patch segment does not include a

DEI NSTALL descriptor.

ASW

Scripts Patches| [SegDescrip

P5

Scripts bin SegDescrip data

Figure 5-12: Example Installed Patch

The COE ingtallation software assumes that higher numbered patches must be removed
before a lower numbered patch can be removed. For example, patch 2 cannot be removed
until patch 5 is removed. However, if patch 5 cannot be removed - because there is no
DEI NSTALL descriptor for patch 5 - patches 1 and 2 cannot be removed either. The only
way to remove them is to remove the entire segment.

DIl compliance requires that:

Patch segments shall be named SegDi r . Pnunber where SegDir is the assigned
directory name for the segment to be patched, and number is a sequential patch
number.

Patch segments shall perform the necessary operations to replace files through the
Post I nstal | script.

Permanent patch segments shall be designated by the absence of a DEI NSTALL script.

Patch segments can also be used to make updates to a database segment prior to the
release of a new database segment that incorporates the patch. The patch segment
structure will be the same as the database segment being patched, and the patch name
follows the same conventions as for any other patch segment.

DIl COE I&RTS: Rev 3.0 January 1997 5-43

Segment Types and Attributes

Any objects, scripts, etc. that are being updated will be in the same location under the
patch segment directory as the corresponding original is under the database segment
directory. Post | nst al | will be used to backup the origina and copy the new file to the
database segment directory. The patch segment will have the same owner as the database
segment being patched.

Any changes to executables provided with the patch will be implemented in the same
manner as patches to other software segments. Any changes to the database provided with
the segment will require an anaysis to determine application segment dependencies.
Changes to the database must be coordinated with application segment developers.

If the patch segment is making any changes to the database objects, its developers are
responsible for preserving the information those objects currently contain, together with
restoring any permissions that have been granted on the objects. This usually requires
extracting and saving the records from the objects being modified, making the schema
changes, and then reloading their data. That portion of the patch segment must be
implemented in a manner that alowsit to be restarted or re-executed without data loss in
the event of system or media failure during the patch installation.

5.4.7 Aggregate, Parent, and Child Attributes

It is sometimes convenient for a collection of segments to be treated as an indivisible unit.
The aggregate attribute provides this capability and the collection of segments are called
an aggregate segment. One, and only one, segment is designated as the parent segment
and the remaining segments are designated as children. Parent and child segments are
designated as members of an aggregate in the SegNane descriptor file. The child segment
must list its parent segment, while the parent segment must list each child in the aggregate.
See subsection 5.5 below for the segment descriptor information required to do this. Each
segment within the aggregate is packaged according to its segment type as described in
preceding subsections.

The parent segment plays a specia role in the aggregate. During ingtallation with the
segment installer, only the parent segment is “seen” by the operator. Child components are
not displayed as selectable items, but are automatically loaded with the parent. Therefore,
the segment name and release notes associated with the parent segment should be carefully
chosen to be properly descriptive of the aggregate.

The parent segment is the first segment loaded from the aggregate. Child segments are
loaded next in the order listed by the parent segment. Because of this, child segments may
specify a dependency on the parent, but shall not specify dependencies upon one another.

In some situations, a child segment in an aggregate should be loaded conditionally. That is,
the child should only be loaded if it is not already on disk, or only if it isalater version. An
example of this situation is if a collection of segments created by a single developer must
use the same executable. One approach would be to create the common executable and
put it into its own separate segment. Then al the remaining segments would need to state
a dependency upon it. An alternative approach, supported here, isto package the common

5-44 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

executable as a child segment that is to be conditionally loaded and placed in an aggregate
with each segment that needs it. The conditional load capability is specified by the
$LOADCOND keyword in the child segment’s SegNarme descriptor (see subsection 5.5.33
below).

The COE requires that each segment include a Secur ity segment descriptor file. This
file is used primarily as a documentation aid and is used by the installer tool to indicate
which segments are classified at what level. The security level of the parent segment must
dominate that of the child segments. For example, if a child segment has a SECRET
classification, then the parent segment must have a SECRET or higher classification. The
segment developer must ensure that each segment in the aggregate is compatible for the
hardware platform. Veri f ySeg will check for this condition and reject an aggregate
with incompatible hardware platforms specified.

Disk space required is specified by each individual segment, not by the aggregate parent.
The COE ingtallation tools may load parent and child segments on different disk partitions,
depending upon space available at install time. During installation, the space reported to
the installer takes into account whether or not the aggregate includes a conditional load
child, and whether or not the segment is already on disk. That is, the installer tool reports
the additional space required on the disk to load the selected segment(s).

DIl compliance requires:

One and only segment in the aggregate shall be designated as the parent segment.

Child segments may specify a dependency on the parent, but shall not specify
dependencies upon one another.

The security level of the parent segment shall dominate the security level of al child
segments.

Segments within an aggregate shall be consistent with regard to the hardware platform
specified.

Segments shall individually specify their own disk space requirements,
5.4.8 COE-Component Attribute

Authorized segments may specify the attribute of being a COE-component segment. COE-
component segments are sSimilar to aggregate segments in that one segment serves the role
of a parent segment and all others are children to that parent. The parent segment is
similar to an account group segment which is affected by a collection of child component
segments. However, there are important differences between COE-component segments
and aggregate segments, and between the parent COE-component segment and account
groups.

DIl COE I&RTS: Rev 3.0 January 1997 5-45

Segment Types and Attributes

At installation time, a segment identified as a COE component must have an
authorization key™ (see the $KEY keyword below) specified or else the segment will
be rejected.

Exactly one segment is designated as the parent COE component for the entire system.
Thisis the segment whose directory is/ h/ CCE.

Child COE-component segments are not loaded unless they are required. That is, a
child COE-component segment will not be loaded unless there is another segment
which expresses a dependency upon it.

COE-component segments are organized into a very specific structure.

The parent COE-component segment does not set up a runtime environment. It sets
up a baseline environment which is inherited by all account groups.

Figure 5-13 shows the directory structure for COE-component segments. Since COE
components form the foundation for the entire system, they are collected together in a
single place and are validated more rigorously during segment development, integration,
and ingtallation. Special processing, as explained below, is performed on the COE
components because of their unique position within the architecture.

The SegDescr i p subdirectory, required for all segments, underneath / h/ COE refers to
the collection of COE components as a whole. Segments designated as child COE
components are loaded in the subdirectory / h/ COE/ Conp. Each child COE-component
segment has its own SegDescri p, bin, Scripts, and data subdirectory as
appropriate. If insufficient space exists to load the COE component directly under
/ h/ COE/ Conp, asymbolic link is created to where the segment was actually loaded.

Environment files underneath / h/ COE/ Scri pt s are included by every account group
so that they are automatically inherited by every segment. The file. cshr c. CCE sets the
path environment variable so that / h/ COE/ bi n is first in the search path before any
other segments. Environment extensions for child COE components are handled
differently than environment extensions for other segments. As child COE-component
segments are installed, environment extension files located underneath the child COE
component’s Scri pt s subdirectory are textually inserted directly into the appropriate
file underneath / h/ COE/ Scri pt s. This insertion is performed automatically by the
installation tools. This is done to avoid the runtime overhead of executing several
sour ce statementsto pick up child segment extensions.

> To preserve backwards compatibility, segments which are already authorized as COE-component
segments are not required to use the $KEY keyword for this I&RTS release. However, they are required to
migrate to this approach. In the interim, a legacy segment identified as a COE-component segment which
does not use the $KEY keyword is compared against a table containing the names of authorized COE-
component segments. If it does not match, the segment is rejected. All new COE-component segments
must use the $KEY keyword.

5-46 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

Child COE-component segments shall not alter the pat h environment variable. It is not
necessary to do so because as child COE components are loaded, the installation tools
create a symbolic link underneath / h/ COE/ bi n to where the executables were actually
loaded. This is done so that the search path contains only one entry for the COE,
regardless of the number of actual segments comprising the installed COE. This approach
mandates that all COE-component segments use the segment prefix to name executables.
Ver i f ySeg will issue a warning for COE-component segments that do not meet this
requirement, but in a future release it will strictly fail such a component.

COE
I I I I
Scripts bin data| |SegDescrip Comp
,_I_\ |
EM UB | .. EM UB (| CDE | | DCE
.chsrc.COE
Jogin.COE

Figure 5-13: COE-Component Segments Directory Structure

Symbolic links are also created underneath / h/ COE/ dat a to point to the child COE
component’s dat a subdirectory. The installation tools automatically delete these
symbolic links when a COE-component segment is deinstalled.

To summarize DIl compliance requirements:

COE components shall be authorized by the DIl COE Chief Engineer. They will be
issued an authorization key that the developer shall specify in the segment with the
$KEY keyword.

Child COE components shall not alter the pat h environment variable.
COE components shall use the segment prefix to name all executables.

Child COE components shall use the segment prefix to name al public symbols
contained in files within the segment’s Scr i pt s subdirectory.

DIl COE I&RTS: Rev 3.0 January 1997 5-47

Segment Types and Attributes

5.4.9 Web Attribute

Segment types that have the Web attribute are either Web servers or Web-application
segments (e.g., Web clients). By definition, Web servers are dso COE-component
segments, so they have that implied attribute as well. Web applications may or may not be
COE components, and so must indicate explicitly whether or not they are. This is
described in subsection 5.5.33 below.

Web applications can only be installed on a platform that already has a Web server loaded
on it. Therefore Web applications must be designed so that they can access other COE
services that may be located on another platform, possibly even behind a firewall. This
alows dites to isolate the main COE-based system from the Web server by firewalls or
other security-related techniques.

Other than specifying the Web attribute, no additional segment descriptors are presently
required beyond those identified for all other segments.

5.4.10 Generic Attribute

The Generic attribute is provided to allow a segment to indicate that it should be
automatically made a member of all “regular” account groups. This means that the
segment, unless it indicates otherwise, will be made a participant of all account groups
except those which are character-interface-based (e.g., Char | F) or accessed through
remote execution account groups such as Renot eX.

This capahility is provided for two reasons. First, some segments should be made a
member of virtualy every account group. An example is a Web browser which is set up to
provide access to HTML help pages. Such a segment should be a member of the
following:

the System Admin account group

the Security Admin account group

the Database Admin account group

the operator account group (e.g., GCCS, ECPN).

It is convenient that this happen automatically without the need for the segment to
explicitly list every account group it is to be a member of. Such segments do not need to
express any affected account group in the SegNamne descriptor.

Second, some segments developed for one system may be generally applicable to other
mission systems, yet this may not have been realized when the segment was created. Using
the Web browser example, if it is packaged for GCCS and it states GCCS is the affected
account group, the segment’s SegNamne descriptor will need to be modified to use it for a
different system such as ECPN or GCSS. Declaring the segment to have the generic
attribute avoids this problem.

5-48 January 1997 DIl COE I&RTS: Rev 3.0

Segment Types and Attributes

There are some specia points to note about segments which declare the generic attribute:

The segment is automatically added to every account group except Char | F and
Renot eX.

Site administrators can establish user profiles to deny an operator access to the generic
segment, even if it isa member of an account group.

The generic segment is only stored on the disk once, regardless of how many account
groups it is made a member of.

Generic segments may exclude account groups by listing the groups to exclude with
the $SEXCLUDE keyword in the SegNane descriptor.

The generic attribute may be combined with other segment attributes.
Subsection 5.5.33 states which attributes may be combined.

5.4.11 Segment Dependencies

Segments specify dependencies upon one another through the Requi r es descriptor, and,
for database segments with database dependencies, the Dat abase descriptor described
below. However, the COE does not allow circular dependencies. That is, a Situation where
Seg A depends upon Seg B, Seg B depends upon Seg C, and Seg C depends upon Seg A
is strictly forbidden.

Components of an aggregate may have dependencies upon other components within the
same aggregate and such dependencies could lead to the circular situation just described.
But since components of an aggregate are aways loaded together as a unit, this does not
pose a problem. Child components of an aggregate must not specify dependencies upon
one another in the Requi r es file, even if they do indeed have such dependencies.
Likewise, the parent segment must not specify a dependency on children within the
aggregate. An aggregate of database segments cannot have circular database dependencies
among the segments or there will be no valid database creation order.

DIl COE I&RTS: Rev 3.0 January 1997 5-49

Segment Descriptors

5.5 Segment Descriptors

This section details the contents of the segment descriptor files. These files are the key to
providing seamless and coordinated systems integration across all segments. Adherence to
the format described here is required for all segments to ensure DIl compliance. This
enables automatic verification and installation of segments.

The software tool Ver i f ySeg must be run during the development phase to ensure that
segments properly use segment descriptor files. The software tool Makel nst al | uses
information in segment descriptor files to compress and package segments in a format
suitable for installation from tape, from a disk-based LAN segment server, from a remote
gite, or from other media. At installation time, the installation tools use segment descriptor
information to make the COE changes required (e.g., update menu files) so that software
components are available to the user.

Some segment information is contained within individual files while other segment
information is collected into a single file, Segl nf 0. Segl nf o isan ASCI|I file (smilar to
aWindows . | NI file) with multiple sections containing segment descriptor information.
Table 5-4 lists each of the descriptor files and which are required, optional, or not
applicable for each segment type. Table 5-5 lists the same information for segment
descriptor sections within the Segl nf o descriptor file. The Veri fySeg tool will
display these two tables when the - t flag is given on the command-line so that the latest
information from these two tables is available online.

A Segl nf o segment section begins with a single line of the form
[section nane]

where section name is chosen from the list in Table 5-5. A section continues until another
section name is encountered, or the end of the file is reached. A section may appear only
once within the Segl nf o file, but the order in which sections appear is unimportant.
Section names are not case sensitive.

If a section name that the tools do not recognize is encountered, a check is made to see if
a helper function is available to process the section. If so, the helper function is invoked,
otherwise an error is issued. Appendix C describes which tools accept helper functions.
Creation of a helper functions require authorization by the DIl COE Chief Engineer.

5-50 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

Descriptor Acct
File COTS | Grp
DEINSTALL
FileAttribs
Installed
PostInstall
Prelnstall
PreMakel nst
ReleaseNotes
SegChecksum

Seglnfo

SegName
Validated

VERSION

Patch

O
2
®

:U—:UIJ—;UOOO—OOg

o|—|=o|3|—|n|0|o|o|-|0|0
o|—|=o|3|—|o|0|o|o|-|0|0
o|—|>o|3|—|n|0|o|o|-|o|o
o|—|x|x|—|o|o|o|o|—-|o|o|R

[—|||—|T|O|O|T|—|O|O

R - Required O - Optional N - Not Applicable
| - Created by Integrator or Installation Software

Table 5-4: Segment Descriptor Files

Acct
Section COTS | Grp
AcctGroup
"AppPaths
COEServices
Community
Comm.deinstall
Compat
Conflicts

Data

Database
"DCEDescrip
Direct

FilesList
Hardware

Help

Icons

Menus
Network
Permissions
Processes
"Registry
"RegrdScripts
Requires
Security
SharedFile

Patch

O
2
®

O:UOOOOOZOOOIJOOOOZOOOOOozg

o|m|o|z|o|o|z|z|o|o|o|m|m|o|o|z|z|o|o|o|olo|z|z
o|x|o|m|o|o|o|z|m|=|o|m|o|o|z|z|z|o|o|o|o|o|o|m
Zlo|o|1Z|o|Z|Z|Z|Z|Z|0|13|0o|o|Z|Z[1|O0|0|o0|0|0|Z2(Z2
z|x|o|z|o|z|z|z|z|z|o|n|o|o|z|m|z|0|0|0|0|0|Z|Z|8
o|x|o|z|o|o|o|z|o|o|o|m|o|o|z|o|z|o|z|o|o|o|z|z

R - Required O - Optional N - Not Applicable
" - NT platformsonly * - Unix platforms only

Table 5-5: Seglnfo Segment Descriptor Sections

DIl COE I&RTS: Rev 3.0 January 1997 5-51

Segment Descriptors

Certain genera characteristics are common to al files or sections listed in these two
tables:

1.

All descriptor files are ASCII data files. Regardless of platform, the descriptor files
may have an optional file extension. The . TXT file extension is permitted for each
descriptor file except DEI NSTALL, Postlnstall, Prelnstall, and
Pr eMakel nst . These are actually executables and may have a . BAT extension (for
batch files), a . EXE extension (for compiled code), or no extension at all. The file
extensions are optional, but developers should conform to standards on the platform
for which the segment is targeted.

In describing syntax, options which may appear exactly once are delimited by brackets
(i.e., “[17), while options that may appear multiple times are delimited by braces (i.e.,
“{'}7). The *|” (boolean exclusive or) symbol is used to indicate a selection of one
item from a list of choices. The delimiters are not entered into the actual descriptor
file.

Descriptor files may contain comments. Comments are delimited by using either the
standard C convention'® (e.g., delimited by /* */), or on aline by line basis using the #
character. C style comments may not be nested. C style comments may not be used in
Postlnstall, Prelnstall, PreMakel nst, or DEI NSTALL since these are
executable scripts. (These may also be compiled programs instead of scripts, athough
scripts are recommended because they can be examined at integration time for
potential problems.)

Blank lines may be used freely and are ignored unless they are within a block of text
for insertion, replacement, etc. Blank lines are ignored when searching for a block to
delete or replace. Similarly, blanks, tabs, and other whitespace are ignored unless they
are part of ablock to insert or replace.

When a block of text is required, such asin adding a block of text to a community file,
the characters “{* and ‘“}” are used as block delimiters.

Keywords inside a descriptor file are always prefixed with the “$” character.

C style #i f def , #el se, #el i f, #endi f , and #i f ndef constructs may be used
in descriptor files, along with the standard C boolean operators. These constructs may
not span segment descriptor sections. The constants which may be used in these
constructs are defined in subsection 5.3.

16 This should not be misunderstood as stating a preference for C/C++ over Ada or any other language.
The comments referred to are placed in data files, not executable code. C style comments were selected
because they allow a block of text to be commented out by surrounding the block with a single “/* */” pair
instead of including a comment token on each line.

5-52 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

8.

10.

11.

12.

During ingtallation, the COE ingtallation software sets up to five environment
variables: | NSTALL_DI R is the absolute pathname to where the segment will be
loaded (Prelnstall) or was loaded (Postlnstall). MACH NE_CPU and
MACHI NE_GOS are set to describe the type of platform on which the software has been
loaded. Valid vaues for these environment variables are listed in subsection 5.3.
SYSTEM ROOT (for NT only) is set to point to the directory where Windows is
installed. COE_TMPSPACE is the location of temporary space allocated for the
duration of segment installation.

Parameters which follow a keyword are given on the same line as the keyword and are
separated by colons. The exception to this rule is when the keyword signas the
beginning of a variable length list. For example,

$PATH: / et C

specifies a pathname while

$LI ST
fl
f2
f3

specifies alist of files.

Some segment descriptors, such as the Requi r es descriptor, specify the name of
another segment that the COE installation tools must search for at install time. To
speed up the search process, segment names are expressed in the form

segnent name: prefix: honme dir:[version: {patches}]

where segment name is the name of the segment, prefix is the segment’s prefix, home
dir is the segment’s expected home directory, while version and patches are optional.
home dir is searched first, and if the segment name found there is the same as that
specified, a match is declared successful. If home dir does not exist, is not a segment,
or the segment name does not match, an exhaustive search is performed on all
segments on all mounted disk partitions.

(NT) When a disk drive needs to be specified in a filename, the filename must be
enclosed in double quotes. This is required so that the tools can distinguish between
use of ‘:’ as a field delimiter for descriptors, or as a separator between a disk drive
name and a pathname.

Some segment descriptors alow a version number or patch level to be specified. See
the previous Requi r es example. If no version number is specified, any version found
is successful. If a verson number is specified, an ordinary lexical comparison of
primary version numbers is made with zeroes inserted for any missing digits. For

DIl COE I&RTS: Rev 3.0 January 1997 5-53

Segment Descriptors

13.

14.

15.

example, a version number such as 3.4/SunOS-4.1.3 is truncated to just the primary
version number which is then expanded to be 3.4.0.0 for comparison purposes.

Some descriptor file features require prior Chief Engineer approval, or are restricted to
COE-component segments. These are described in the sections which follow and
generally require the $KEY keyword to be specified in the applicable section. This
keyword requires an authorization key provided by the Chief Engineer. The
authorization key is based on several segment attributes including segment name,
segment prefix, and the section name to which it applies. The format of the $KEY
keyword is

$KEY: permit requested: authorizati on key

where permit requested is the keyword or section name the key applies to, and
authorization key is the key given to the developer by the Chief Engineer. A separate
authorization key is required for each permit requested.

Certain keywords or section names may be applicable to one platform but not another.
These are noted in the discussion below. If the tools encounter a keyword that is not
appropriate for a platform, a warning will be generated and the keyword or section
will be ignored.

A segment is considered to be a permanent segment if the DEI NSTALL descriptor is
not provided. This means that the installation tools will prevent a permanent segment
from being deleted, but it may be upgraded by loading a newer version of the segment.

DIl compliance requires the following:

Segments shall include all required files shown in Table 5-4. (Ver i f ySeg will fall a
segment that does not include a required descriptor file.)

Segments shall fully specify all dependencies and conflicts through the Requi r es and
Conf | i ct s descriptor files. (Circular dependencies are not allowed.)

Segments shall fully specify disk and memory requirements (memory may be omitted
for data segments) in the Har dwar e file.

Segments shall not use Postlnstall, Prelnstall, PreMakel nst, or
DEI NSTALL to make modifications that the COE instalation software will make. Of
particular importance is that segments shall not delete the segment directory during a
DEI NSTALL script.

Segments shall use the Rel easeNot es file to convey information meaningful to an
operator, not the system integrator. Rel easeNot es files shall not include company
names, names of individuals, nor software trouble report numbers.

5-54 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

Segments shall specify a version number and date in the VERSI ON descriptor file and
shall increment the version number for each subsequent release. Version numbers shall
fully comply with the requirements stipulated in Chapter 3 of this document.

5.5.1 AcctGroup
Syntax for the Acct Gr oup descriptor is

group nane:group ID:shell:profile flag: hone dir:default profile name
where

group name is an alphanumeric string used to identify this account group. The account
group name must be unique (i.e., no other account group may have the same name).

group id isa Unix group id to be inserted into the password file for accounts created
from this group. The user id is calculated automatically by examining the password file
for user accounts within the same group and then adding 1 to the highest user id.
Group ids less than 100 should be avoided.

shell is the Unix shell to execute when logging in (e.g., / bi n/ csh, / bi n/ sh). This
parameter should be left blank for NT platforms.

profileflag is O if no profiles are alowed, otherwise 1.

home dir is the home directory for the given account group (eg.,
/' h/ Acct G ps/ SecAdm).

default profile name is an alphanumeric string identifying the account group’s default
profile. This name isignored unless the profile flag is nonzero.

In effect, Acct G oup is a template of what to enter into the / et ¢/ passwd file for
accounts within this group.

Group names and profile names are not case sensitive. The maximum number of
characters in a group name, including embedded blanks, is 15. The maximum number of
characters in a profile name'’ is 64. The maximum number of characters in the home
directory pathname is 256.

If the account group is to have a default profile, the installation software will automatically
create the profile with the name specified. The profile will be set up to have a classification
level of TOP SECRET (unless the segment specifies otherwise), al possible object
permissions enabled (see the Per m ssi ons descriptor), and al possible menu and icon

¥ The maximum in the previous |1&RTS was limited to 15 characters. This has been extended to support
those services which describe profiles based on a combination of duty position and organization, or similar
approach.

DIl COE I&RTS: Rev 3.0 January 1997 5-55

Segment Descriptors

entries enabled. Note that site administrators will not normally assign the default profile to
any user because it would provide greater access than is warranted either from a “need to
know” perspective, or from a perspective of overwhelming the operator with too many
features. The default profile is provided only as a convenient template for creating user
profiles.

The profile classification can be explicitly stated by including aline of the form

$CLASSI F: cl assi fication
in the descriptor file. Valid classification values are

UNCLASS
CONFIDENTIAL
SECRET

TOP SECRET

5.5.2 AppPaths (NT Only)

The AppPat hs segment descriptor is used to add a list of executables and DLLs to the
NT search path. The executables are listed immediately after the segment descriptor asin

[AppPat hs]
appl. exe

app2. exe
app3. DLL

The executables and DLLs must be in the segment’s bi n subdirectory.
The installation tools remove the named executables and DLLs from the NT search path
when the segment is deleted. Refer to subsection 5.5.34 for more information on shared

files.

Note: Aswith Unix, it isaviolation of the COE to use this technique to
insert the current working directory into the NT search path.

5.5.3 COEServices

Segments frequently require changes to services provided by the operating system. Make
such requests through the COESer vi ces descriptor to ensure proper coordination with
other segments. One or more entries may follow each keyword below.

$CROUPS (Unix only)

Segments may add entriesto the/ et ¢/ gr oup file as follows:

5-56 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

$CROUPS
nanme: group id

where name and group id have the meaning defined by the Unix gr oup file. If the
specified name already exists in the group file but with a different group id, an error will
be generated.

$PASSWORDS (Unix only)

Segments may occasionally need to add entries into the Unix password file to establish file
ownership. The syntax is:

| ogi n nane: user id:group id:comrent: hone dir:shell

where these entries correspond to the entries in the Unix passwd file. Multiple lines may
be included to add multiple password entries.

The installation software inserts an “*” for the password field to ensure that these are
system accounts, not actual login accounts. Segments that need to add a user account
must be approved in advance by the Chief Engineer, and then will generally be approved
only for COE-component segments.

The ingtallation software processes the $PASSWORDS keyword before the segment is
actually loaded onto disk so that Post | nst al | scripts which need to set file ownership
will work properly.

$SERVI CES

Ports are added to the / et ¢/ servi ces (or NT equivalent) system file through the
$SERVI CES keyword. The syntax is:

$SERVI CES[: comment]
nane: port: protocol {:alias}

where
name is the name of the socket to add,
port is the port number requested, and
protocol iseither t cp or udp.

The optional comment, if provided, will be inserted into the / et ¢/ ser vi ces file by the
installation software.

DIl COE I&RTS: Rev 3.0 January 1997 5-57

Segment Descriptors

If the port number requested is aready in use under another name, an error will be
generated. Note that port numbers in the range 2000-2999 are reserved for COE
segments.

This keyword should not be necessary for most DCE applications because endpoints are
defined dynamically.

5.5.4 Community

Many of the descriptor files direct the installation software to insert, delete, replace or
otherwise alter blocks of text in ASCII files. The Communi ty descriptor file is provided
to issue smilar commands to the installation software for which no corresponding
descriptor file exists. It is intended to be a “catch all” and should be used carefully, and
only when there is no other way to accomplish the modifications required. Veri f ySeg
will fail any segment which attempts to use a Conmruni t y descriptor file to modify afile
that is already handled by another descriptor file.

Segment developers shall use the Comm dei nst al | descriptor file to undo changes
made by the Comrunity filee Comm dei nstall is invoked when a segment is
removed, and is essentidly a reverse image of the Community filee The
Conm dei nst al | isneither required nor useful if the segment is a permanent segment.

The commands listed below are avalable for both the Community and
Comm dei nst al | files. Blocks of text are delimited by braces, where the opening and
closing brace are on aline by themselves. When commands require that a textual search be
done, embedded spaces and control characters are ignored during the search.

To illustrate how the commands work, assume the file | DE. TEST contains the following
text:

Sanple file

Define runtinme vars

setenv OPT_HOME / h/ OPT

setenv OPT_DATA $OPT_HOVE/ dat a

set a test var
setenv testvar $HOVE

set filec
setenv testvar2 $HOVE/ dat a
end of exanple file

$APPEND

Append the block of text which follows to the end of the file.

5-58 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

Example:

$APPEND
{

This is an exanple to append at the end of a file
source ny_scri pt
#

}
$COMVENT: char

Using the character specified, find the block of text which follows and comment it out.
This effectively deletes text, but has the advantage that it can easily be uncommented.

The command sequence

$COMVENT: #
{

set a test var
setenv testvar $HOVE
set filec

}

will replace the text to modify the file as follows:
Sanple file

Define runtinme vars
setenv OPT_HOME / h/ OPT
setenv OPT_DATA $OPT_HOWE/ dat a

set a test var
#set env testvar $HOVE
#

#set fil ec

setenv testvar2 $HOVE/ dat a

end of exanple file

Notice that the blank line between set env and set isignored in searching for the lines
to delete, but is preserved in the commented out version of the file.

Note: Be careful to note that the ‘# character is not a valid comment
delimiter for all community files! (e.g., X and Motif resource files
use ‘!’ asacomment delimiter.)

DIl COE I&RTS: Rev 3.0 January 1997 5-59

Segment Descriptors

$DELETE [ALL]

Find the block of text which follows and delete it from the file. If ALL is specified, delete
every occurrence in the file.

The command sequence
$DELETE
{

set a test var
setenv testvar $HOVE
set filec

}

will delete the block of text to modify the file as follows:
Sanple file
Define runtime vars

setenv OPT_HOME / h/ OPT
setenv OPT_DATA $OPT_HOVE/ dat a

setenv testvar2 $HOVE/ dat a

end of exanple file

Notice that the blank line between set env and set isignored in searching for the lines
to delete, but is deleted in the resulting version of thefile.

$FI LE: fil ename
Name the file to which the commands that follow apply.
Example:
$FILE: /h/ I DE/ Scri pts/ |1 DE. JMCI S
$| NSERT [ALL]
Find the first occurrence of the first block of text, then insert the second block of text
immediately after it. If ALL is specified, insert the second block of text after every

occurrence.

Example:

5-60 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

$I NSERT

{
setenv OPT_DATA $OPT_HOVE/ dat a
}

{
setenv OPT_BIN $OPT_HOVE/ bi n
setenv OPT_SRC $OPT_HOWE/ src
}

The resulting changes to the example file are:
Sanple file

Define runtinme vars

setenv OPT_HOME / h/ OPT

set env OPT_DATA $OPT_HOVE/ dat a
setenv OPT_BI N $OPT_HOVE/ bi n
setenv OPT_SRC $OPT_HOWE/ src

set a test var
setenv testvar $HOVE

set filec
setenv testvar2 $HOVE/ dat a
end of exanple file

$REPLACE [ALL]

Replace the first occurrence of the first block of text, if found, with the second. If ALL is
specified, replace every occurrence.

Example:

$REPLACE

{
setenv OPT_HOME / h/ OPT

}

{
setenv OPT_HOME / hone2/ OPT

}

Embedded spaces and control characters are ignored in the search, but are preserved in the
replacement. Case is preserved in the search and in the replacement.

DIl COE I&RTS: Rev 3.0 January 1997 5-61

Segment Descriptors

$SUBSTR DELETE [ALL] | INSERT [ALL] | REPLACE [ALL]

When performing a textual search, search for a matching substring instead. Insertions,
deletions, or replacements are made as indicated.

$UNCOVIVENT: char

Find the block of text which follows and uncomment it. The comment character is char,
but the block of text which follows the $UNCOMVENT command does not contain the
comment character.

Example (undo the effects of the SCOMVENT example above):

$UNCOMMVENT: #
{

set a test var
setenv testvar $HOVE
set filec

}

Blank lines will also be uncommented if there are any between
set a test var

and

set filec

Consider a more complete example. The following will insert two new environment
variables at the end of the file, replace OPT_HOVE with OPTI ON_HOVE, replace
OPT_DATA with OPTI ON_DATA, and replace all occurrences of the substring “st var ”
with“st _var ”. This example also shows the use of comments.

5-62 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

/[* This is a multi-line conment
just like in standard C
*

This is a single |ine coment

Assune file is in IDE Scripts subdirectory
$FI LE: / h/ | DE/ Scri pts/ | DE. TEST

$REPLACE

{
setenv OPT_HOME / h/ OPT

set env OPT_DATA $OPT_HOWE/ dat a
}

{
setenv OPTI ON_HOME / h/ OPTI ON
set env OPTI ON_DATA $OPTI ON_HOVE/ dat a

}

$SUBSTR REPLACE ALL
{

stvar

}
{

st _var

}
$APPEND

Theresulting filel DE. TEST is

DIl COE I&RTS: Rev 3.0 January 1997 5-63

Segment Descriptors

Sanple file

Define runtinme vars

setenv OPTI ON_HOME / h/ OPTI ON

set env OPTI ON_DATA $OPTI ON_HOVE/ dat a

set a test var
setenv test var $HOMVE

set filec
setenv test var2 $HOVE dat a

end of exanple file

This example shows the use of comments to enclose modifications between a
BEGIN/END pair. This technique is recommended when making modifications to
community filesto make it easier to determine changes made as segments are installed.

Note: Thistechnique is used by the installation software as environment
extension files are modified. Therefore, developers must not put
such comments in environment extension files.

5.5.5 Comm.deinstall

Comm dei nst al | istheinverse of Conmruni ty. Its purpose is to undo modifications
made to community files when a segment is removed from the system.

The corresponding Conm dei nst al | file to undo the changes made in the example
from the Communi t y subsectioniis:

5-64 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

$FILE: /h/ | DE/ Scri pt s/ | DE. TEST
$REPLACE

{
setenv OPTI ON_HOME / h/ OPTI ON

setenv OPTI ON_DATA $OPTI ON_HOVE/ dat a
}

{
setenv OPT_HOME / h/ OPT

setenv OPT_DATA $OPT_HOVE/ dat a
}

$SUBSTR REPLACE ALL
{

st _var

}
{

stvar

}
$DELETE

5.5.6 Compat

Subsequent releases of a segment are not always backwards compatible. The Conpat

descriptor is used to indicate the degree to which backward compatibility is preserved with
the newly released segment. This is achieved by listing verson numbers for previous
releases which the current release supports. In the sense used here, backwards
compatibility means that the segment being released will work with other segments that
have been compiled and linked with an earlier release version.

The format of the Conpat descriptor is a single line containing one of three possible
entries:

+ALL Thisindicates that the current release is backwards compatible with
all previous releases.

-NONE This indicates that the current release is not backwards compatible
with any previous release.

DIl COE I&RTS: Rev 3.0 January 1997 5-65

Segment Descriptors

version list Thisindicates that the current release is backwards compatible to a
list of versions. Version lists are denoted by the $LI ST,
$EARLI EST, and SEXCEPTI ONS keywords.

For example, suppose the new MySeg release is version 3.2.5.4 and that it is compatible
with all versions from 2.9.1 up to the present with the exception of versions 3.0.1.2 and
the 3.1 version series. Then the Conpat file would contain the following entries:

First nunber listed is earliest conpatible version
$EARLI| EST

2.9.1

Remai ni ng version nunbers are exceptions
$EXCEPTI ONS

3.0.1.2

3.1

When a digit is omitted from the version number, or an asterisk is in place of the digit,
there is an assumed wildcard in that digit position. That is, any digits would be acceptable
in that position.

The $LI ST keyword is used to indicate an explicit list of compatible versions. $LI ST is
mutually exclusive with the SEARLI EST/$EXCEPTI ONS keyword pair. When specifying
alist, arange can be indicated by the optional keyword $TO. Thus, the previous example
could also have been done as

In some cases, one or more patches must be applied to preserve compatibility. The patches
are listed by number immediately after the version number by using a colon between patch
numbers. This may be done only with the $L1 ST keyword. For example,

$LI ST

2.9.1: P4: P5

3.0.1.1

3.0.2: P8 $TO 3.0. 4: P7

This means that the current version is backwards compatible with

2.9.1, but only if patches P4 and P5 have been applied

3.0.1.1 with no restrictions regarding patches

3.0.2 through 3.0.4 with the restriction that patch P8 must be applied to version 3.0.2
and patch P7 must be applied to version 3.0.4.

5-66 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

If no Conpat file exists, the present version is assumed to not be backwards compatible
with any previous releases. That is, - NONE is assumed.

5.5.7 Conflicts

Two segments may conflict with one another so that one or the other, but not both, can be
installed. The Conf | i ct s descriptor is used to specify such inter-segment conflicts. The
format isalist of conflicting segmentsin the form:

segnent nane: prefix: home dir[:version{:patch}]

where segment name is the name of the conflicting segment as given in the segment’s
SegNane descriptor file, prefix is the conflicting segment’ s segment prefix, and home dir
is the conflicting segment’s home directory.

TheConf | i ct s descriptor is essentialy the converse of the Requi r es descriptor file.

5.5.8 Data

The Dat a descriptor is used to describe where data files are to be logically loaded and
their scope (global, local, or segment). Only one of the three scopes may be specified in
the descriptor file; that is, a data segment has one and only one scope.

The syntax is

$SEGVENT: segnane: prefi x: home dir

for segment data, or

$LOCAL: segnane: prefi x: homre dir

for local data, or

$G.OBAL: segnane: prefi x: home dir

for global data, where segname, prefix, and home dir refer to the affected segment. The
segname and prefix must match the name given in the affected segment’s SegNane
descriptor. Figure 5-9 shows that the data to install is underneath the segment’s dat a
subdirectory.

5.5.9 Database

The Dat abase segment descriptor is used to identify information such as object
dependencies that are within the database and therefore cannot be resolved without the
use of the DBMS. There are five keywords used under this descriptor to track object-level
information: $REFERENCES, $MODI FI ES, $ROLES, $SCOPE, and $ACCESSES. The

DIl COE I&RTS: Rev 3.0 January 1997 5-67

Segment Descriptors

first four are used by database segments, the last is used by database application segments.
Their usage is discussed below.

$SCOPE: scope

This keyword specifies the scope of the database objects. Lega vaues for scope are
UNI QUE, SHARED, and UNI VERSAL. Scope is required for database segments, but it is
not presently used. It is reserved for future use and required now so that segments will not
require modifications later.

$REFERENCES

The $REFERENCES keyword is followed by a list of the individual database objects that
the database segment depends upon which are external to the segment. The Requi r es
segment descriptor must be used to state a dependency upon the segments whose objects
are listed under $REFERENCES. Version compatibility will be checked using the
Requi r es descriptor so it is not repeated here. The format for the object list is

$REFERENCES
obj ect nane: schema

For example, assume that the GSORTS database segment references the
COUNTRY_CCODE table in the S& M segment and the PORTS table in the NID segment.
The DBO accounts for S&M and NID respectively are TABLE_MASTER and NI D. The
appropriate descriptor is

$REFERENCES
COUNTRY_CODE: TABLE_MASTER
PORTS: NI D

$MODI FI ES

The $MODI FI ES keyword is followed by a list of the external database objects that the
database segment modifies by adding triggers, or by including them in procedures or
functions. All segments whose objects are listed here must also appear under the
Requi r es descriptor. The format for the object list is

$MODI FI ES
obj ect name: schema: nodi fication type: nodification nane

The object name and schema follow the same rules as the $REFERENCES keyword.
Modification type is used to stipulate what has been done. Its legal values are TRI GGER
for database triggers or PROCEDURE for database functions, procedures, or packages.
Modification name is the name of the trigger or procedure that is attached to the object.
An example follows defining a trigger named GSORTS_NI D_COPY that is attached to the
NID database’s PORTS table.

5-68 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

$MCDI FI ES
PORTS: NI D: TRI GGER: GSORTS_NI D_COPY

$ROLES

The $ROLES keyword is followed by a list of the database roles created by the database
segment. Itsformat is

$ROLES
rol e nane

An example that defines two roles follows.

$ROLES
EWR RO
EW R_DATAL_RW

It is recommended that comments be placed in the segment descriptor to describe what
these roles are for and how they are intended to be used. This is a convenient place to
document such important information.

$ACCESSES

The $ACCESSES keyword is used in a software segment rather than a database segment.
It associates individual applications within a software to their supporting database roles.
Its format is

$ACCESSES
appl i cation nane:rol e nanme: segnent nane

The application name is the name of the executable within the segment. Role name is the
name of the database role used by the application. segment name is the name of the
database segment that owns that role. That segment will be searched by the instaler tool,
if necessary, to obtain the DBO account name. An example follows associating the
EW R_W DE application to the EW R_ROrole.

$ACCESSES
EW R_W DE. FMX: EW R_RO. EW RDB

Note: Do not confuse the Dat abase segment descriptor with the
database segment type. The segment descriptor, described in this
subsection, describes specialized processing for the COE to
perform on a segment which is of segment type ‘database.’

DIl COE I&RTS: Rev 3.0 January 1997 5-69

Segment Descriptors

5.5.10 DCEDescrip (Unix Only)

This segment descriptor is used to define characteristics of DCE servers. It is not required
for DCE client applications. The associated keywords are used to describe the server.

$DCESERVERS

This keyword is used to list the servers that are provided by the segment (usually only
one). The server executables are in the bi n subdirectory for the segment. The keyword is
followed by a list of the server names, interface attributes, security attributes, and
configuration attributes. The format is:

SERVER servi cenane: princi pal : ui d: gi d: hone: starton
where servicename is the name of the service, principal is the DCE account for the server,
uid is the Unix account for the server, gid is the Unix group id for the server, and home is

the Unix home directory for the server. starton is one of the following values: AUTQ,
EXPLI CI T, BOOT, FAI LURE.

Interface attributes are listed in the form:
| NTERFACE servi cenane: i nterfacenane: UU D

where servicename is the name of the service implementing this interface, interfacename is
the name of the interface, and UUID is the universal unique id assigned to this interface.

Interface security attributes are listed in the form:
RPCSECURI TY servi cenane: i nterfacenane: security

where servicename is the name of the service implementing this interface, interfacename is
the name of the interface, and security is the maximum security supported by the server.

Extended configuration attributes are listed in the form:

CONFI G servicenane: attri bute: scope: UU D
where servicename is the name of the service implementing this interface, attribute is the
name of the attribute in the extended schema, scope is the scope of the attribute (either

CCE or SERVER), and UUID isthe unique object id for the attribute.

$DCEBOOT
$DCEDEMAND

These two keywords are used to designate processes that are to be started by dced. The
format for the list of processes is the same as for processes listed in the Pr ocesses

5-70 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

segment descriptor (see subsection 5.5.25). $DCEBQOOT indicates that dced starts the
processes at boot time while $DCEDEMAND indicates that they are started on demand.

$DFSFi | es

This keyword is smilar in purpose to the FilesList segment descriptor
(subsection 5.5.14). It is used instead of Fi |l esLi st because the files listed are
maintained by DFS, not by the native operating system. The keyword is followed by a list
of filenamesin the form:

fil ename access

where filename is the DFS filename used by the application, and access indicates the
operations performed on the file (RWK). All file names shall start with
[...lcellname/fs/.

$KEY: DCE: key

All boot time processes, including those started by dced, require approval by the Chief
Engineer. Therefore, the $DCEBOOT keyword must include the $KEY keyword as well.
key is the authorization key provided by the Chief Engineer and it applies to all servers
within this segment.

There are some important things to note about DCE servers.

Use $DCESer ver s instead of the $SERVERS keyword (Net wor k descriptor) to
define DCE-based servers.

Document DFS files with the $DFSFi | es keyword.

Include a $PASSWORDS entry in COESer vi ces to establish a Unix userid for each
server principal.

Developers should normally provide a single DCE server in a segment. It would be
unusual to need to provide more than one.

5.5.11 DEINSTALL

The DEI NSTALL descriptor file is an executable, either a script or a compiled program,
that is invoked by the installation software when the operator has elected to remove a
segment. This may occur by explicitly selecting a segment to remove or by electing to
install a new verson of the segment. DEI NSTALL should perform actions such as
shutting down segment-owned background processes prior to segment removal.
Operations performed in preparation for a segment update should normally be done in
Prel nstal |, while DEI NSTALL is used when the segment is to be “permanently”
removed from the system.

DIl COE I&RTS: Rev 3.0 January 1997 5-71

Segment Descriptors

If this file does not exist, the segment is assumed to be permanent and cannot be removed
except when installing a new version. If a new version is installed and this file does not
exist, the installation software will use the information in the descriptor directory to undo
changes made by the previous ingtallation of the segment and then simply delete the
directory.

For security reasons, the DEI NSTALL script is not run with root-level privileges, unless
the $ROOT keyword is given in the Di r ect descriptor, described below. Note that the
$KEY keyword must aso be specified in the Di r ect descriptor to acquire root-level
privileges.

5.5.12 Direct

The segment descriptor Di r ect alows a segment to issues specia instructions to the
installation tools. If the segment is part of an aggregate, the directives below apply only to
the segment in whose SegDescr i p subdirectory the directives appear.

$ACCTADD: execut abl e

This keyword informs the instalation software that the specified executable, in the
segment’s bi n subdirectory, should be run each time a user account is added to the
system. Ver i f ySeg will flag use of this keyword as a warning to highlight that it is
being used. Prior permission must be given by the Chief Engineer before this keyword can
be used.

$ACCTDEL: execut abl e

This keyword informs the instalation software that the specified executable, in the
segment’s bi n subdirectory, should be run each time a user account is deleted from the
system. Ver i f ySeg will flag use of this keyword as a warning to highlight that it is
being used. For security reasons, prior permisson must be given by the Chief Engineer
before this keyword can be used.

$CMDLI NE

Segments which provide a command-line access must insert this keyword in their segment.

SKEY: r equest : key

Severa of the keywords presented here require authorization by the Chief Engineer. Thus,
$KEY must be provided for each requested permission. key is the authorization key
provided by the Chief Engineer. request is an indication of the type of request being made.
Requests are grouped by the type of request being made (e.g., security-related,
installation-related) and are one of the following values:

5-72 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

| NSTALL for permissontorun Post I nstal | ,Prel nstal | ,and
DEI NSTALL with root permission

ACCTS to use any of the account creation/deletion keywords (e.g.,
for $ACCTDEL , $ACCTADD, $PROFADD, $PROFDEL,
and $PROFSW TCH)

CVDLI NE to use the $CVDLI NE keyword

SUPERUSER to use the $SUPERUSER keyword

A separate authorization key and $KEY entry is required for each request group, but the
key applies to any and all requests within that group.

$NOCOVPRESS

The Makel nst al | tool automatically compresses segments to reduce the amount of
space required on disk or tape, and to reduce the download time. The installation tools
automeatically decompress segments at instalation time. The $NOCOVPRESS keyword
indicates that compression is not to be performed.

$PROFADD: execut abl e

This keyword operates in the same fashion as $ACCTADD, except that it is used when
profiles are added to the system.

$PROFDEL: execut abl e

This keyword operates in the same fashion as $ACCTDEL, except that it is used when
profiles are added to the system.

$PROFSW TCH: execut abl e

This keyword is similar to $PROFADD except that the executable is run whenever a user
currently logged in switches from one profile to another. The executable is not run when
the user first logsin; it is run only when a profile switch is made.

$REBOOT

The presence of this keyword indicates that the installation software should automatically
reboot the computer after the segment is loaded. If severa segments have been selected
for loading at one time, the reboot operation will not occur until all segments have been
processed. The operator will be notified before the reboot occurs and given the option to
override the reboot directive.

$REMOTE[: XTERM | : CHARBI F]

This keyword indicates that the functions (all functions) provided by this segment can be
executed remotely. At ingtallation time, the instalation software will note that this

DIl COE I&RTS: Rev 3.0 January 1997 5-73

Segment Descriptors

segment can be executed remotely. If the XTERM attribute is present, it indicates that the
segment can also be accessed via an “xterm” capability, and output will be routed to the
display surface pointed to by the DI SPLAY environment variable setting. If the CHARBI F
attribute is present, it indicates that the segment supports a character-based interface.
CHARBI F and XTERMwill normally be mutually exclusive.

By default, segments are assumed to be locally executable only.

$ROOT: Postlnstall | Prelnstall | DElINSTALL

The presence of this keyword indicates that the specified descriptor must be run with root
privileges. A separate $ROOT entry is required for each descriptor. Ver i f ySeg will flag
use of this keyword as a warning to highlight that it is being used. For security reasons,
prior permisson must be given by the Chief Engineer before this keyword can be used.
$ROOT requires the SKEY keyword as well.

$SUPERUSER

Segments which provide or require superuser privileges, via a command-line or otherwise,
must insert this keyword in their segment. Note that the $KEY keyword must also be used
to verify that Chief Engineer approval has been obtained.

5.5.13 FileAttribs

The Fil eAttri bs descriptor allows a segment to specify the attributes (owner,
read/write permissions, group) for each file in the segment. It is created by the tool
MakeAttri bs (see Appendix C). The installation tools, just prior to Post I nstal |,
will use information in thisfile to set file attributes.

FileAttribs has certain redtrictions due to security and segment integrity
considerations. The following will be ignored:

Files within the SegDescr i p subdirectory

Files outside the segment

Requeststo set root ownership

Requests to set Unix “sticky bits’ (e.g., chnod 4644)

If Fil eAttribs isnot provided by the segment, the installation tools will automatically
do the following for all except COTS segment types:

chnod 554 for dl filesin the bi n subdirectory

chnod 664 for al filesin the dat a subdirectory

for account groups, set owner to the same group id as specified in the Acct G ps
descriptor for all subdirectories except SegDescri p

for other segment types, set owner to the same group id as the affected segment for all
subdirectories except SegDescri p.

5-74 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

5.5.14 FilesList

Fi | esLi st is alist of files and directories that make up the current segment. It is
required for COTS segments. For other segment types, it is useful for documenting
community files modified or used by the segment. The reason that this descriptor is
required for COTS segments is that COTS products do not usualy conform to the DII-
mandated directory structure. Therefore, the location of files modified by or contributed
by the segment is not usually readily apparent.

Fi | esLi st may contain the following keywords:

$DI RS a list of directories which this segment adds to the system. All files in
the directory are assumed to belong to the segment.

$FI LES alist of files which this segment adds to the system.

$PATH a shortcut for specifying a pathname. Succeeding $DI RS or $FI LES
are relative with respect to the path specified.

A keyword must precede any list so that it will be clear whether a directory or a file is
intended.

As an example, assume a segment to be installed creates the following four subdirectories

/ h/ dat a/test/ datal
/ h/ dat a/t est/ dat a2
/ h/ dat a/ opt / dat a3
[usr/opt/tenp

and adds three files (f 1, f 2, f 3) to the / et ¢ subdirectory. Then the file Fi | esLi st
could contain the following entries:

$PATH: / h/ dat a
$DI RS
test/datal

t est/ dat a2
opt/ dat a3

$DI RS
[usr/opt/tenp
$PATH: / et c
$FI LES

f1

f2

f3

The $DI RS keyword before /usr/opt/tenp is not necessary, but is shown to
illustrate that Fi | esLi st may contain multiple occurrences of the keywords.

DIl COE I&RTS: Rev 3.0 January 1997 5-75

Segment Descriptors

For COTS products, this descriptor must be used to list:

1. al files and directories the product adds that lie outside the segment’s assigned
directory, and

2. any community file the COTS product modifies unless the modification is made by the
COE instalation tools.

For example, assume a COTS segment adds a port to / et ¢/ servi ces through the
CCOESer vi ces segment descriptor. Further, assume that the vendor provides a program
that directly modifies the / et ¢/ gr oup file as part of the installation process. Then
Fi | esLi st must list / et ¢/ gr oup but does not need to include / et c/ servi ces
because the installation tool modifies it as aresult of the COESer vi ces descriptor.

5.5.15 Hardware

The Har dwar e descriptor defines the computing resources required by the segment.
Keywords $CPU and SVEMORY may appear only once; both are required for all segments,
except that SMEMORY may be omitted for a data segment. $DI SK and $PARTI TI ON are
mutually exclusive, but one must appear in the segment descriptor. $DI SK may appear
only once, but $PARTI TI ON may appear multiple times. $OPSYS and $TEMPSPACE
are optional.

$CPU: pl atform | ALL

platform is one of the supported platform constants listed in subsection 5.3 for
MACHI NE_CPU, or ALL. If ALL is given, it indicates that the segment is hardware
independent (e.g., a data segment). If platform is a generic constant (e.g., HP or PC), it
appliesto all platforms of that class. Thus,

$CPU: PC

indicates that the software can be loaded on any PC, whether the PC is a 386, 486, or
Pentium class machine. However,

$CPU. PC386

indicates that the software can be loaded on a 386 or better class platform. Similarly,
HP712 indicates that the software can be loaded on an HP712 or better class platform that
is binary compatible with the HP712.

$DI SK: si ze[: reserve]

size is expressed in kilobytes and is the size of the segment, including al of its
subdirectories, at install time. The COE tool Cal cSpace (see Appendix C) will compute
the disk space occupied by a segment and update this keyword. reserve is also expressed
in kilobytes and is the additional amount of disk storage to reserve for future segment
growth.

5-76 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

$MEMORY: si ze
size is expressed in kilobytes of RAM required.

$OPSYS: operating system| ALL

operating system is one of the supported platform constants listed in subsection 5.3 for
MACHI NE_GCS, or ALL. If ALL isgiven, it indicates that the segment is operating system
independent. Dependencies on a particular version of the operating system are defined in
the Requi r es descriptor where a dependency on a specific segment (e.g., operating
system with a particular version) is described.

$PARTI Tl ON: di sknane: si ze[: reserve]

This keyword allows segments to reserve space on multiple disk partitions. The
installation software will not split a segment across disk partitions, but the segment may
dosoinaPost | nstal | script. Use of multiple disk partitions is discouraged.

size and reserve have the same meanings as for $DI SK. For Unix platforms, diskname is
either an explicit partition name (e.g., / honme2) or an environment variable name of the
form DI SK1, DI SK2, ... DI SK99. The instalation software will set the environment
variables DI SK1, DI SK2, etc. to the absolute pathname for where space has been
allocated. These environment variables are defined for Prelnstall and
Post I nstal | , but not for DEI NSTALL. $PARTI Tl ON keywords are assumed to be
in sequential order, so that environment variable DI SK1 will refer to the first keyword
encountered, DI SK2 to the second, etc.

For NT platforms, diskname must be a disk drive name. For example,

$PARTI TION. " D: ”: 2048
requests 2MB of space onthe “ D” disk drive.

For example, suppose a TDA is compiled to run on an HP, a Solaris, and an NT
workstation. Assume for the HP it requires 512 K of memory, requires 1 MB of disk
storage for the program and its data files, and will expand over time to a maximum of
4 MB. For Solaris, assume it requires 576 K of memory, 1.5 MB for initial disk space, and
will expand to 5 MB. For a PC, assume the requirements are the same as for the Solaris
machine. The proper Har dwar e fileis

DIl COE I&RTS: Rev 3.0 January 1997 5-77

Segment Descriptors

#i fdef HP
$CPU: HP
$Dl SK: 1024: 3072
$MEMORY: 512
#el i f SOL
$CPU: SCL
$Dl SK: 1536: 3584
$MVEMORY: 500
#elif PC & & NT
$CPU: PC486
$Dl SK: 1536: 3584
$OPSYS: NT
$MEMORY: 571
#endi f

Note that this example indicates that the information described is the same for al HP
platforms, the same for al Solaris platforms, but that it only applies to PC486 or better
machines running Windows NT.

As another example, assume a data segment is to be allocated across three disk partitions.
Further assume that the first partition must be / hone5 and requires 10 MB, but the
remaining space required is 20 MB each and can be on any available disk partition. The
proper $PARTI T1 ON statements are:

$PARTI Tl ON: / hone5: 10240
$PARTI TI ON: DI SK2: 20480
$PARTI Tl ON: DI SK3: 20480

Assume that the installation software is able to alocate space on / hone5 as requested,
and that the remainder of the space requested is on / hone18. The ingtallation software
will set the following environment variables:

set env Dl SK1 / honeb
set env Dl SK2 / honel8
set env Dl SK3 / honel8

$TEMPSPACE: si ze

Some segments may need temporary space during the installation process. The
$TEMPSPACE keyword requests that size kilobytes of disk space be allocated for
temporary use during the installation process. If space is available, the installation software
sets the environment variable COE_TMPSPACE to the absolute path where space was
alocated. If space is not available, an error message is displayed to the operator and the
segment installation fails. The instalation software automatically deletes the allocated
gpace when segment installation is completed. Space is alocated prior to executing
Prelnstall.

5-78 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

5.5.16 Help

This segment descriptor is a place holder for a future COE revision. Its purpose is to
provide a mechanism for identifying and managing help files within the system. Segment
developers should use this descriptor now to reduce migration problems later.

As Figure 5-2 indicates, segment help files are located directly underneath the directory
SegDi r/ dat a/ Hel p

They are listed individually in the Hel p segment descriptor and grouped according to
their format. Help file format is identified by one of the following keywords:

$HTML alist of help filesin HTML format.
$MAN alist of help files in Unix man page format.
SMSHELP alist of help filesin Microsoft Help format (NT only).

$TEXT alist of help filesin plain ASCII text format (i.e., no graphics or special
characters).

$OTHER a list of files in a format other than that identified by the preceding
keywords.

The order in which these keywords is listed is not important and they may be repeated
multiple times within the segment descriptor. HTML is the COE-standard formeat, but the
other formats are provided to assist legacy system migration.

For example, assume a segment contains two HTML-format help files (HL and H2), Unix
man pages (manl and man?2), three ASCII text files (T1, T2, and T3), and one help file
in an interna format (doc1). Then the proper Hel p segment descriptor entries are:

[Hel p]
$HTM
H1

H2
$VAN
manl
man?2
$TEXT
T1

T2

T3
$OTHER
docl

DIl COE I&RTS: Rev 3.0 January 1997 5-79

Segment Descriptors

5.5.17 lcons

The | cons descriptor is used to define the icons that are to be made available on the
desktop to launch segment functions. The format of the descriptor is a list of files
underneath dat a/ | cons that define icon bitmaps and their associated executables. Refer
to the Executive Manager APl documentation for a description of the file format.

5.5.18 Installed

The installation software creates the file | nst al | ed as segments are loaded. The file
specifies the segment that was loaded, the date and time of the instalation, which
workstation was used to do the installation, and the version number of the software used
to do the installation. Thisfile islocated underneath the segment descriptor directory.

5.5.19 Menus

Use the Menus descriptor to list the names of menu files contained within the segment.
Figure 5-2 shows that segment menu files are located underneath dat a/ Menus. Refer to
the Executive Manager APl documentation for the menu file format.

For account groups, this descriptor is simply a list of the account group’s menu files. For
other segments, the format of each lineis

menu file[:affected nenu file]

where menu file is the name of a menu file underneath the segment’s dat a/ Menus
subdirectory, and affected menu file is the account group menu file to update. If multiple
account groups are affected, as listed in the SegNamne descriptor, each affected account
group is updated. If no affected menu file is listed, then menu file is smply added to the
list of menu files which comprise the account group’s menu templates.

For example, suppose a segment called ASWI'DA has four menu filesin the dat a/ Menus
subdirectory: Syst em Mor eSt uf f , ASWIDA, and Loggi ng. Assume that Syst emis
to be added to the affected account group’s Syst emmenu file, and Mor eSt uf f isto be
added to the affected account group’s Def aul t menu file. The proper entries are as
follows:

System System
Mor eSt uf f : Def aul t
ASWDA

Loggi ng
5.5.20 Network

The Net wor k descriptor is used to describe network-related parameters. Use of this
descriptor requires prior approva by the DIl COE Chief Engineer and its use is restricted
to COE-component segments, except for DCE Servers which are not necessarily COE-

5-80 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

component segments. Veri fySeg will strictly fail any segment that includes this
descriptor unless it is a COE-component segment or it is a DCE server (e.g., the
DCEDescr i p isprovided in the segment’s Segl nf o file).

One or more entries may follow each keyword listed below.

$HOSTS

IP addresses and hostnames are generally established by a system or network
administrator. Segments may add | P addresses and host names as follows:

$HOSTS
LOCAL | REMOTE : I P address: name{:alias}

where |P address, name, and alias are as defined for the Unix / et ¢/ host s file. If the
| P address specified already exists in the network hosts file, the name and alias entries are
added as alias names. If LOCAL is specified, the entry is made only to the local network
hostsfile. If REMOTE is specified, the entry is applied to the NIS/NIS+ or DNS server. If
REMOTE is specified but neither NIS/NIS+ or DNS are ingtalled, it will default to
LOCAL.

Segments should rarely need to directly add host table entries. Ver i f ySeg will issue a
warning for any segment which adds host table entries.

$KEY: Net wor k: key

key is the authorization key given to the segment developer by the Chief Engineer. This
entry is required only once within the section, and it applies to all entries within the
section.

$MOUNT (Unix only)
The $MOUNT keyword is used to specify NFS mount points. The syntax is
host nane: NFS nount point:target dir
where hostname is the name of a workstation on the network, NFS mount point is the file
partition to mount, and target dir is where to mount the requested partition on the local

machine. If target dir does not exist on the local machine, it will be created.

For example, the sequence

$MOUNT
dbserver: / honme3/ USERS: / h/ USERS

will perform the Unix equivalent of

DIl COE I&RTS: Rev 3.0 January 1997 5-81

Segment Descriptors

mount dbser ver:/ home3/ USERS / h/ USERS

If the hostname specified is the same as the local machine, a mount is not performed.
Instead, the NFS mount point is made available for other workstations to mount. If a
mount is performed as a result of processing this keyword, the system will automatically
reboot the system after segment installation is completed. It performs as if the $REBOOT
keyword (see the Di r ect descriptor) were encountered; that is, the operator is notified
that areboot is required and given an option to override the reboot directive.

$NETMASK: mask

This keyword alows a COE-component segment to set the subnet mask to mask. This
should rarely be required since the netmask is normally established as part of the kernel
COE. If two COE-component segments attempt to set the netmask, the last segment
loaded succeeds.

$SERVERS

Most COE services are implemented as servers. This keyword allows a segment to list the
servers, by symbolic name, that it contains. These servers are registered with the COE so
that other segments can obtain their location through the COEFi ndSer ver function (see
Appendix C).

Note: Servers implemented through DCE functions should not use this
keyword. The $DCESERVERS keyword should be used in the
DCEDescr i p segment descriptor.

Each name listed is added to a table maintained by the COE of all servers in the system.
This table is used by the System Administration software to allow a site administrator to
indicate which platform actually contains the server. The name given is added as an alias
to the network host table for the workstation that contains the server. If NIS/NIS+/DNS
are being used, the dias is added to the NIS/NIS+/DNS-managed host table. Otherwise, it
isadded to/ et c/ host s.

For example, assume a COE-component segment contains two servers named
master Trk and master Coms. Assume that this segment is loaded on two
workstatations: sys1l and gar | and. Some servers are designed to recognize whether
they are the master server or are a dave to a master server located elsewhere. For this
reason, the COE must handle situations where the same segment is loaded on a server and
a client machine. Assume in this example that the segment operates as a master server on
sysl, but asadaveongar | and.

The following statements identify the servers contained within this segment:

$SERVERS
mast er Tr k
mast er Conms

5-82 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

When the segment is loaded, the installation software performs the following actions:

1. Add nmast er Tr k and mast er Conms to the COE-maintained list of servers if they
are not aready there.

2. Check to see if mast er Tr k or mast er Comms aready exist in the network host
table. If so, processing is completed.

3. Otherwise, ask the operator if this is the server platform for mast er Trk and
mast er Conmrs.

4. If the operator answers “no” to the previous question, processing is complete.

5. If the answer is “yes,” update the network host table to contain mast er Tr k and
mast er Conmrs as aliases for the machine being loaded.

Note that this approach does not require the server (sys1) to be loaded prior to the client
(gar | and). Furthermore, the site administrator can later change the configuration
because all necessary information is available to the System Administrator software. Also
note that the segment does not require the actual hostnames or | P addresses.

Hostnames are site-specific and cannot be predicted in advance. Therefore, the COE
requires that segments use meaningful symbolic names as illustrated here instead of
making assumptions about a specific hosthame or naming convention.

5.5.21 Permissions

The Security Administrator software provides the ability to describe objects (files, data
fields, executables, etc.) which are to be protected from general access. This information is
used to create profiles which limit an operator's ability to read or modify files.
Applications may query the security software to determine the access permissions granted
to the current user. The Per m ssi ons file is the mechanism by which segments describe
objects and what permissionsto grant or deny for the objects.

This descriptor is a sequence of lines of the form:
obj ect nane: perm ssi on abbrevi ation: perm ssi on

object name is the item to be controlled, permission is the type of access to grant or deny
(add, delete, read, etc.), and permission abbreviation is a single character abbreviation for
the permission.

Permission abbreviations specified for an account group must agree with al segments
which become part of the group. The following are reserved abbreviations and their
meanings:

DIl COE I&RTS: Rev 3.0 January 1997 5-83

Segment Descriptors

A - Add

D - Delete
E - Edit

P - Print

R - Read

V - View

X - Transmit

Segments may use additional abbreviations as required.

For example, suppose a segment generates reports that are to be protected. Permissions
relevant to reports are delete, print, read, and archive. The proper Per m ssi ons fileis:

Reports: D: Del ete: P: Print: R Read: Z: Archi ve
(Z isused to indicate archive permission in this example.)

If the Per m ssi ons file is missing, the security software will report that no access
permissions are to be granted for the requested object.

5.5.22 Postlnstall

Most of the work required to install segments is performed by the COE instalation
software through information contained in the descriptor directory. However, additional
segment-dependent steps must sometimes be performed. Postlnstall is an
executable, either a script or a compiled program, that segment developers may provide to
handle segment-specific installation functions after the segment has been copied to disk
and installed by the COE. During installation, Post | nst al | may invoke functions (e.g.,
prompt the user) described in Appendix C.

The Post I nstal | descriptor must not do any operations that are performed by the
COE ingtallation software. For security reasons, the Post | nst al | script is not run with
root-level privileges unless the $ROOT keyword is given in the Di r ect descriptor. Note
that the SKEY keyword must also be specified inthe Di r ect descriptor before root-level
privileges will be granted.

5.5.23 Prelnstall

The Pr el nst al | descriptor fileisidentical to Post | nst al | except that it is invoked
by the installation software before the segment is loaded onto the disk. It must not do any
operations that are performed by the COE installation software. For security reasons, the
Prel nstal | script is not run with root-level privileges, unless the $ROOT keyword is
giveninthe Di r ect descriptor. Note that the $KEY keyword must also be specified in
the Di r ect descriptor before root-level privileges will be granted.

5-84 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

5.5.24 PreMakelnst

PreMakel nst is an optional executable program or script that is invoked by the
Makel nst al | tool. It's purpose isto alow a segment to perform “cleanup” operations,
before Makel nst al | writes the segment to the distribution media. Example cleanup
operations include:

deleting temporary files
ensuring no “core” or other “garbage” files are in the segment
no compiler “scratch” files, such as temporary intermediate object files.

Makel nst al | sets the environment variables | NSTALL_ DI R, MACHI NE_CPU, and
MACHI NE_GS prior to invoking Pr eiVakel nst .

5.5.25 Processes

Use the Pr ocesses descriptor to identify background processes (see subsection 5.9.6).
The format of the descriptor is a keyword which identifies the type of process, followed by
alist of processesto launch in the form

process {paraneters}

where process is the name of the executable to launch, and parameters are optional
process-dependent parameters. Output from the process is piped to / dev/ nul | . For
example, suppose Test Pr oc is a background process which accepts two parameters, - t
and - c. It will be launched in a manner equivalent to

TestProc -t -¢c >& /dev/null &

Valid keywords to identify process type are:

$BOOT specify alist of processes to launch at boot time

$BACKGROUND specify alist of background processes

$PERI ODI C specify a list of background processes to run a some
specified interval

$PRI VI LEGED specify a list of processes to run in privileged (i.e., “root™)
mode (available for Unix only)

$RUN_ONCE specify a list of “one-shot” processes to run the next time

the system is started, but only the next time the system is
started and never thereafter

$SESSI ON specify alist of login session processes
$SESSI ON_EXI T specify alist of processes to run prior to terminating a login
session

The $PERI ODI C keyword requires specification of the required interval, in hours. The
format is

DIl COE I&RTS: Rev 3.0 January 1997 5-85

Segment Descriptors

$PERI ODI C: hour s

Executables are assumed to be in the segment’s bi n subdirectory. The $PATH keyword
can be used to indicate a different location. The syntax for the $PATH keyword is

$PATH: pat hnane

where pathname may be either a relative or an absolute pathname. If the pathname is
relative, it isrelative to the segment’ s home directory.

Use of boot-time, background, periodic, privileged, and “one shot” processes requires
authorization by the Chief Engineer. Therefore, the $KEY keyword must be specified
once, in the form

$KEY: Processes: key
The authorization key applies to all requests within the Pr ocesses segment descriptor.

The Processes descriptor is a powerful capability the COE provides for managing
application processes. Refer to documentation in the Developer’'s Toolkit for more
detailed information on this descriptor.

Note: DCE processes are not described with the Processes
descriptor. Use the DCEDescri p segment descriptor for DCE
server-related processes.

5.5.26 Registry (NT only)

The Registry segment descriptor alows segments to add entries to the NT registry. It is
followed by a list of keys and filenames, underneath the segment’s dat a/ Regi stry
subdirectory, whose contents are the key values to add to the registry. Ver i f ySeg will
generate an error if any of the files listed do not exist.

Consider the following example.

[Regi stry]

$HKEY_ LOCAL_MACHI NE/ SOFTWARE: MYEntri es
$HKEY_ USERS/ DEFAULT: DEFAULT USER
$HKEY USERS: ALL_USERS

This indicates that files named MyEnt ri es, DEFAULT_USER, and ALL_USERS are
located under the directory SegDi r / dat a/ Regi st ry (where SegDir is the segment’s
assigned directory). The contents of these files will be added to the registry under the keys

5-86 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

HKEY_LOCAL_MACHI NE/ SOFTWARE
HKEY_USERS/ DEFAULT
HKEY_USERS/ <user | D>

This capability must be used with great care.

The installer tools will remove registry entries added with this segment descriptor
when the segment is deleted.

Segment developers shall not create root keys.

5.5.27 ReleaseNotes

Use the ASCII file Rel easeNot es to provide information useful to an operator in
understanding the new functionality being provided by the segment or the problems being
fixed. It is not a help file, nor is it information targeted to the system integrator. Therefore,
it must not refer to problem report numbers, version numbers, release dates, individuals or
companies, point of contact, or similar information. (This type of information is contained
elsewhere, such as in the VERSI ON file, and duplication of information may lead to
conflicting or confusing information for the operator.) The Rel easeNot es file must not
contain any tabs or embedded control characters.

An example of a“poor” Rel easeNot es fileis

Rel ease: 5.6.3

Poi nt of Contact: John Doe, Tritron Conpany
Phone: (619) 555-1234

1. Inplenmented NCR #302

2. Added check for nmenmory overfl ow
3. Fixed problemw th double scrolling in STR #307

An example of a“good” Rel easeNot es fileis

This rel ease fixes two known probl ens:

(a) Calculation of range and bearing for polar |atitudes
has been corrected

(b) Display of garbled latitude/longitude in the Track Sunmmary
di splay for ownship has been corrected

The foll owing new features are added with this rel ease
1. Search and Rescue TDA added.

2. Option added to restrict operator deletion of comrs
nmessages to only those created by the operator.

DIl COE I&RTS: Rev 3.0 January 1997 5-87

Segment Descriptors

5.5.28 ReqrdScripts (Unix only)

Use the ReqrdScri pts descriptor to define the files that establish the runtime
environment (account group segment types) or to define files to extend the runtime
environment (all other segment types). For account group segments, the syntax is one or
more lines of the form:

script nane:C | L
where C means to copy and L means to create a symbolic link. This flag is used when
login accounts are created to either copy environment files to the user’s login directory or
to create a symbolic link. There can be a maximum of 32 scripts. A script name is
restricted to a maximum length of 32 characters.
For example, the Regr dScr i pt s file for the System Administrator account group is

.cshrc: C
.login:C

The descriptor format for segment types other than account group is dightly different:

scri pt nane: env ext nane

where script name is the name of a script in the affected account group’s Scri pts
subdirectory and env ext name is the name of an environment extension file in the present
segment’s Scr i pt s subdirectory.

For example, assume a segment loaded under / h/ Tst Seg with a segment prefix TST is
to be added to the System Administrator application and it requires extending the
. cshrc file. The proper Reqr dScri pt s entry is:

.cshrc:.cshrc. TST
The ingtallation tools will insert the statements
if (-e /h/ TstSeg/ Scripts/.cshrc. TST) then
source /h/ Tst Seg/ Scripts/.cshrc. TST

endi f

into the file /h/ Acct G ps/ SysAdm Scri pts/.cshrc. When the segment
Tst Seq isdeleted, the installation tools will remove these statements.

Refer to documentation in the Developer’s Toolkit for more information.

5-88 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

5.5.29 Requires

Segment dependencies are stated through the Requi r es descriptor. The format is:

[$HOVE DI R pat hnane]
segnent name: prefix: home dir:[version{:patch}]

Segments will not be loaded until all segments they depend upon are loaded. For this
reason, the parent segment for an aggregate must not list child segments in the
Requi r es descriptor.

The optional $HOVE_DI R keyword is used in situations where a segment must be loaded
onto the disk in a particular place. This technique should be avoided.

For example, assume the segment TEST must be installed in the directory
/ home3/ t np/ TEST, it requires version 3.0.2 of segment SegA with patches P1 and
P4, and also requires SegB version 5.1.1. The Requi r es descriptor is

$HOVE DI R/ hone 3/t np/ TEST
SegA Nane: SEGA: / h/ SegA: 3. 0. 2: P1: P4
SegB Nane: SEGB:/ h/ SegB: 5. 1.1

In some cases, it may be possible that a segment dependency can be fulfilled by one or
more segments. This is indicated by bracketing such segments with braces and using the
keyword $OR between acceptable alternatives.

As an example, suppose the segment TEST above has a dependency that can be satisfied
by SegA or the combination of SegB and SegC. The proper Requi r es descriptor is

$HOVE DI R / hone 3/t np/ TEST

SegA Nane: SEGA: / h/ SegA
$OR

SegB Nane: SEGB: / h/ SegB

SegC Nane: SEGC: / h/ SegC

}

Multiple bracketed alternatives may appear in the same descriptor.

Note: The parent segment for a child does not need to be listed in the
child’'s Requi r es descriptor. By virtue of naming the aggregate
parent in SegNane, thereis an implied dependency.

DIl COE I&RTS: Rev 3.0 January 1997 5-89

Segment Descriptors

5.5.30 Security

The Security descriptor contains a single entry indicating the highest classification
level for the segment (UNCLASS, CONFIDENTIAL, SECRET, TOP SECRET). If the
segment contains items with multiple classification levels, the highest classification level
must be specified.

Note: Thisfileisused only to determine whether or not software should
be loaded onto aworkstation. It should not be confused with data
labeling or other security features provided by trusted systems.

5.5.31 SegChecksum

The file SegChecksum is an optiona file created by integration software. It contains
information necessary for the System Administrator software to perform an integrity check
on the installed software. If the file does not exist, the integrity check cannot be performed
on the segment.

5.5.32 Seginfo

Segl nf o is an ASCII descriptor file which contains segment descriptor information in
one or more sections. Table 5-5 lists the possible sections.

5.5.33 SegName

The SegNane descriptor provides the following information:

segment type ($TYPE keyword)

segment name ($NAME keyword)

segment prefix ($PREFI X keyword)

segment attributes ($TYPE keyword)

optional aliases for this segment ($EQUI V keyword)

conditional loading requirements ($L QADCOND)

company and product name to add to the registry (NT only)

if applicable, affected account group, or affected segment for patches ($SEGVENT
keyword)

if applicable, name of parent or child segments ($PARENT, $CHI LD keywords)

The keywords $TYPE, $NAME, and $PREFI X are required for each SegNane
descriptor. Additional keywords required depend upon segment type. COE-component
segments may not contain $SEGVENT, $PARENT, or $CHI LD keywords. All other
segments must have one $PARENT line, one or more $CHI LD lines, or one or more
$SEGVENT lines.

5-90 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

$COVPANY NAME: st ri ngl (NT only)
$PRODUCT _NAME: st ri ng2 (NT only)

These two keywords are used for COTS products on NT platforms. They are used to
insert a company and product name into the registry. If either keyword is used, both are
required. This causes the installer to insert the company name (stringl) and product name
(string2) in the registry entry

SOFTWARE\ conpany nane\ product nane
$EQUI V: nane: prefi x

This keyword, which may appear multiple times, allows a segment to define aliases. It is
intended to help legacy segments migrate from an earlier COE (e.g., IMCIS or GCCS
COE) to the DIl COE. It is primarily intended for account group segments, but may be
used for other segments as well. name is the desired alias and prefix is the alias segment
prefix.

This keyword alows a segment from a legacy system to be loaded under an equivalent
account group without the need to modify the legacy segment’s dependency statements.
For example, assume that SegA was originally developed for IMCIS and that it statesin
its segment descriptors a dependency on an account group whose name is JMCI S.
Assume that the legacy segment prefix was JMC. Assume that SegB was developed for
the GCCS account group. Finally, assume that SegA and SegB are to be loaded on a new
system under an account group whose name is New Acct G oup and whose segment
prefix is NAG. Then the keyword entries

$NAME: New Acct G oup
$PREFI X: NAG

$EQUI V: IMCI S: IMC
$EQUI V: GCCS: GCCS

dlow SegA and SegB to be loaded properly even though they state a dependency on
segments, JMCl S and GCCS, that do not exist in the new system.

$EXCLUDE: nare: prefi x: home dir

This keyword is used to indicate an account group that a generic segment is to be
excluded from. name is the name of the account group, prefix is the account group’s
segment prefix, and home dir is the assumed location of the account group’s assigned
directory. This keyword can only be used with segments that specify the GENERIC
attribute. The Char | F and Renpt e X account groups are automatically excluded.

$KEY: CCE: key

This keyword is required for all segments that have the attribute COE CHI LD, COE
PARENT, or WEB SERVER. key is the authorization key obtained from the DIl COE

DIl COE I&RTS: Rev 3.0 January 1997 5-91

Segment Descriptors

Chief Engineer. For backwards compatibility, existing COE-component segments are
“grandfathered” and may omit this keyword for now. However, existing segments should
be modified to use this keyword to ensure future compatibility.

$LOADCOND

This keyword, which accepts no parameters, is used to indicate that a child segment in an
aggregate is to be conditionally loaded. The child segment is loaded only if the segment
does not already exist on the disk or if the child segment is a later version than one already
on the disk. If this keyword is used, the segment must aso have the CHI LD or COE
CHI LD attribute or else an error is given. This capability is not required for any other type
of segment because the installer tool already checks to be sure an earlier version is not
unintentionally being loaded over alater version.

$TYPE: segnent type[:attributel:attribute2:...]

where valid segment types are

COTS

ACCOUNT GROUP
SOFTWARE

DATA

DATABASE
PATCH

and valid segment attributes are

AGGREGATE
CH LD

CCE CHI LD
CCE PARENT
WEB SERVER
VB APP
GENERI C

AGGREGATE is used to indicate that the segment being defined is the aggregate parent
segment. It is valid only for account group, data, and software segment types. Aggregates
must list one or more child segments with the $CHI LD keyword. The COE does not
allow an aggregate of aggregates. That is, it is not valid for Aggregate A to have a child B
which is also an aggregate.

CHI LD is used to indicate that the segment being defined is an aggregate subordinate
segment. The parent segment must be listed using the $PARENT keyword.

COE PARENT is used to indicate that the segment being defined is the primary COE
segment. Its home directory will be/ h/ CCE.

5-92 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

COE CHI LD is used to indicate that the segment being defined is a COE-component
segment other than the parent. The installation tools will verify that the segment is an
authorized COE component and if not will reject the segment. This is done through the
$KEY keyword.

VWEB SERVER is used to indicate that this segment is a Web server and a COE-
component segment.

VEEB APP isused to indicate that this segment is a Web-based application segment.

CENERI C is used to indicate that this is a generic segment that should be added to the
account groups as described in subsection 5.4.10.

Segment types are mutualy exclusive; only one segment type may be given. Segment
attributes are also mutually exclusive, except for Web and GENERI C attributes as follows:

VEB SERVER may be combined with AGGREGATE, or CHI LD.
VEEB APP may be combined with AGGREGATE, CHI LD, or COE CHI LD.

GENERI C may be combined with all other attributes except WEB SERVER and COE
PARENT.

For example, a generic Web mission application that is a child component of an aggregate
would be expressed as

$TYPE: SOFTWARE: CHI LD: WEB APP: GENERI C
The order in which attributes are listed is unimportant.

$NAME: name

where name is a string of up to 32 alphanumeric characters. Embedded spaces may be
used for readability, but the string must not contain tabs or other control characters.

$PREFI X: prefi x
This keyword establishes the segment’ s assigned prefix, prefix.
$SEGVENT, $CHI LD, $PARENT
The syntax for these three keywords is the same.
keywor d: nane: prefi x: home dir

The descriptor file may contain one and only one $PARENT keyword. Multiple affected
segments or child segments may be listed by listing each segment on a separate line.

DIl COE I&RTS: Rev 3.0 January 1997 5-93

Segment Descriptors

Note: Do not confuse the attribute CHI LD with the $CHI LD keyword.
The $CHI LD keyword is used to indicate a list of subordinate
segments in the parent of an aggregate segment. The CHI LD
attribute is used to indicate that a segment is the subordinate
segment in an aggregate whose parent is identified with the
$PARENT keyword.

5.5.34 SharedFile

This segment descriptor handles installation of NT shared DLLs and Unix shared libraries.
It is followed by a list of filenames that are the names of the shared libraries (Unix) or
DLLs. They must be located in the segment’s bi n subdirectory, which is the DII-
compliant location for shared files. Veri f ySeg issues an error message if a filename
listed does not exist under the segment’s bi n subdirectory. Shared files must use the
segment prefix naming convention to assure that the names are unique.

At instalation time, the segment installer copies the shared file to the directory
/ h/ COE/ Shar ed, deletes the shared file from the segment’s bi n subdirectory, and then
creates a symbolic link from / h/ COE/ Shar ed to the original location. This is done so
that the search path for finding shared files does not need to include any entry other than
/ h/ COE/ Shar ed. Segments which have a dependency upon the shared file must identify
the segment which provides the shared file in the Requi r es segment descriptor.

Installation requires special care to ensure that a segment which provides a shared
library/DLL is not removed when there are segments still installed that require it. For this
reason, the installer maintains a usage counter for the shared file. When the segment which
“owns’ it isinstalled, the count is set to 1. As segments which depend upon it are installed
or removed, the counter is incremented or decremented as appropriate. The installation
tools thus prevent the “owning” segment from being removed until the usage count
indicates there are no more dependent segments installed.

Shared libraries/DLLs require specific consideration within the COE.

Segments must state dependencies on the segment providing the shared library/DLL,
not the actual file itself.

One segment may not update a shared library/DLL “owned” by another segment. This
would otherwise contradict the fundament COE principle that objects (resources, files,
etc.) may be modified only by the segment which owns the object, or by the COE.

5.5.35 Validated

The COE requires strict adherence to integration and test procedures to ensure that a
fielded system will operate correctly. To facilitate integration and testing, the
Ver i f ySeg tool createsthe file Val i dat ed to confirm that a segment has been tested
for DIl compliance. Subsequent tools in the development, integration, and installation

5-94 January 1997 DIl COE I&RTS: Rev 3.0

Segment Descriptors

process use this file to determine whether a segment has been altered, thus indicating that
the segment needs to be revalidated.

The following information is captured:

the version of Ver i f ySeg used to validate the segment

the date and time validation was performed

who performed the validation

acount of al errors and warnings produced by Ver i f ySeg for the segment

a checksum computed to enable detection of modifications made after the segment
was validated.

55.36 VERSION
The format of the VERSI ON descriptor is
version #:date[:tine]

where version # is the verson number for the segment, date is the version date (in
mm/dd/yyyy format), and time is an optional time stamp (in the format hh:mm). Version
numbers must adhere to the rules defined in Chapter 3.

Note: This release of the I&RTS extends the year from 2 digits to 4
digits to avoid complications when the year 2000 arrives.
Ver i f ySeg will issue a warning for any segment that uses less
than 4 digits, but since this date is used for documentation
purposes only, there is no operational impact if only 2 digits are
used.

DIl COE I&RTS: Rev 3.0 January 1997 5-95

Segment Installation

5.6 Segment Installation

Segment ingtallation requires some form of electronic media (tape, CD-ROM, disk, etc.)
that contains the segments, and that has a table of contents which lists the available
segments. Makel nst al | isthe tool which creates such electronic media. However, it is
important to identify the operations (e.g., compression) performed on segments and the
sequence in which these operations are performed.

Installation requires reading the table of contents created by Makel nst al | , selecting
the segments or Configuration Definitions to install, and then copying the segments to
disk. Segments may actively participate in the instalation process through
Postinstall, Prelnstal |, and DEI NSTALL scripts. This subsection details both
the Makel nst al I tool and the installation sequence. At the end of this subsection,
detailed information on database creation and deinstallation is presented.

5.6.1 Makelnstall Flowchart

Figure 5-14 shows the sequence of operations performed by the Makel nst al | tool.

1 Makel nst al | is given a list of segments that are to be processed. For each
segment in the list:

a) If the segment is not already on disk, it is extracted from the repository and
placed in atemporary location.

b) A check is made to ensure that the segment is a valid segment.

C) If the segment is invalid, an error message is displayed. If the segment was
checked out of the repository and placed in a temporary location, the
temporary segment is deleted. Makel nst al | then terminates.

2. If all segments are valid, a worklist is created. The worklist is sorted to ensure that
segments which have dependencies appear in the list after the segments they
depend upon. This ensures that at install time a tape will not have to be rewound
because of segment dependencies.

3. For al segments in the worklist:

a) Prepare the segment by executing the segment’s PrelMakel nst
descriptor if it exists. PreMakel nst is prevented from modifying the
segment’s SegDescr i p. Otherwise, Pr eMakel nst could invalidate the
segment validation step above.

b) Unless the segment specifies otherwise, al segment subdirectories except
SegDescr i p are compressed.

C) The compressed segment and its descriptor directory are written out to the
specified electronic media.

d) If the segment was extracted from the repository and placed in a temporary
location, the temporary segment is deleted.

5-96 January 1997 DIl COE I&RTS: Rev 3.0

Segment Installation

Qe

Issue Error
M essage

Extract Order F
Segment Worklist

For All
Segsin Worklist

Prepare Seg

Y

Compress Seg

Y

Write out Seg

Figure 5-14: Makelnstall Flowchart

DIl COE I&RTS: Rev 3.0 January 1997 5-97

Segment Installation

5.6.2 Installation Flowchart

Figure 5-15 is a detailed flowchart for the segment installation process. The sequence of
Prelnstal |, Postlnstall, and DEI NSTALL executions is the most significant
aspect of the flowchart. Directives contained in the Di r ect descriptor may affect the
seguence (e.g., use of $REBOOT and $ROOT keywords), but such details are omitted for
clarity. The ingtallation software automatically removes patches when a segment is
replaced and deletes any temporary space ($TEMPSPACE keyword) alocated for the
segment. These details are also omitted for clarity.

1.

A load device is selected (tape, disk, etc.) and the table of contents created by
Makel nst al | isread.

Segments found in the table of contents which do not match the target platform are
removed from consideration. Similarly, a check is made to ensure that an operator
cannot inadvertently load a segment for which he is not authorized. The
environment variables MACHI NE_CPU and MACHI NE_CS are set to indicate the
hardware platform.

The media may have Configuration Definitions defined. If they are defined:

a) The operator may select a Configuration Definition to load.

b) If a custom installation is desired, the operator is presented with the table
of contents in which all segments in the selected Configuration Definition
are highlighted. The operator may add or delete segments from this list.

C) If Configuration Definitions are not defined, the operator is shown the table
of contents and must manually select the desired segments.

For all segments selected, a check is made to see if the segment is loadable. To be
loadable, all dependent segments must either be selected or aready on disk.
Conflicting segments must not be selected, nor may they already have been loaded
on disk.

For all segments selected:

a) The ingtalation tools determine where to load the segment. The
environment variable | NSTALL_DI R is set to the absolute pathname to
where the segment will be loaded. Segments can not assume that any
environment variables other than MACH NE_CPU, MACHH NE_GCS,
SYSTEM ROOT (for NT only), | NSTALL_DI R, and those set to refer to
disk space (COE_TMPSPACE, DI SK1, etc.) are defined.

b) If an old version of the segment already exists on disk, the old segment’s
DEI NSTALL script isrun.

(o)) The new segment’s Pr el nst al | script isloaded and executed. Note that
the new segment is not yet on disk.

5-98

January 1997 DIl COE I&RTS: Rev 3.0

Segment Installation

d) The old segment is deinstalled by the installation tools. Modifications made
through the descriptor files are reversed.

€) The old segment is deleted from disk.

f) The new segment is loaded from tape onto disk and decompressed if
necessary.

0) The ingtalation tools process commands from the new segment’s
descriptor files.

h) The new segment’s Post | nstal | script is run. Post I nstall may
invoke runtime tools described in Appendix C (e.g., to prompt the user).

) A status message is displayed indicating whether or not the segment was
successfully installed.

6. If any of the segments installed requested a reboot, the operator is notified and

asked for confirmation. If the operator confirms, the system is rebooted.

DIl COE I&RTS: Rev 3.0 January 1997 5-99

Segment Installation

| Select Load Device |

For All
Segs Selected

Reboot

| Read TOC & SegDestrips |

[Run old DEINSTALL | if
Requested
Reducelist by
H/W & Security | Run new Prelnstall |
| Deinstall old Segment | @
Config_N
Defs?
| Delete old Segment |
Y
Select Config Def
omg | Copy new Segment to disk |

| Decompr ess new Segment |

Install new Segment
I |

|Run new PostInstall |

Y

| Display Status Report |

R

Figure 5-15: Installation Flowchart

5-100 January 1997 DIl COE I&RTS: Rev 3.0

Segment Installation

5.6.3 Database I nstallation and Removal

Within the overall installation and removal flowchart presented in Figure 5-15, there are
some special considerations with regards to handling SHADE databases. Database
installation is described first, then database deinstallation.

5.6.3.1 Database Installation

This subsection describes the installation process flow and how the database segment
components work together to install a data store on the COE database server.
PostInstal |, automatically invoked by COElInstaller, drives the actud
installation and creation of the database and its storage by executing the scripts residing
under the install directory of a database segment. The flowchart in Figure 5-16 depicts the
process logic of aPost | nst al | file with regards to database segments.

Set up Installation
Environment

Y

COEPromptPasswd

COEStartDB Ser ver

Start DBMSin
M aintenance M ode

Running?

Y

Execute ¢
Installation Script

Figure 5-16: Postinstall Logic for DB Install

DIl COE I&RTS: Rev 3.0 January 1997 5-101

Segment Installation

The DBMS should be operating in its maintenance mode (e.g. Oracle’'s command
STARTUP DBA EXCLUSI VE) when a database segment or database patch segment is
installed. This prevents users from accessing data objects during their creation and
possibly corrupting either the segment or the database instance.

Table 5-6 shows, in broad outline, the sequence of steps performed by a database server
segment when it is creating the database. It uses Oracle and Sybase as examples. The first
three steps must be performed by a database account with DBA privileges. The owner
account (and there may be more than one) should be restricted so it can only create
objects in the data stores designated for its use. The remaining steps should be performed
by the owning account and should be done without DBA privileges. This ensures that data
objects are not inadvertently created in data stores belonging to other databases.

Function User | Oracle SQL Command | Sybase SQL Command
1. Allocate Storage DBA create tablespace ... datdfile ... | create database...
2. Create Owner DBA create user ...
3. Create Roleg(s) DBA createrole ... create group ...
4. Create Database Owner | create schema create table ...
5. Load Data Owner | insert into table insert into table
6. Create Constraints | Owner | alter table ... add constraint create constraint ...
7. Grant Access Owner | grant ... ontable... torole grant ... ontable ... to group
8. Disconnect Owner | DBA revoke CONNECT from ...

1.

Table 5-6: Application Database Creation

Allocate Storage. This step is performed by the DBA and creates the physical storage
needed for the database. Developers shall not assume any particular disk configuration
when creating data files and shall create al files in the segment’s DBS fil es
subdirectory. Developers may create multiple storage areas (e.g., Oracle tablespaces
or Sybase segments) to separate different groups of data objects. Developers shall not
modify the core database storage areas.

Create Database Owner. This step is performed by the DBA and creates the account
or accounts that will own the data objects. Their access will be limited to the storage
areas created by the segment and to public storage areas (e.g. Oracle tablespace TEMP
or USERS). Owners shall not have access to system storage areas (e.g. Oracle
tablespace SYSTEM). No permanent objects shall be created in public storage areas by
database segments. No objects shall be created in system storage areas. Owners shall
not have database administrator privileges.

5-102

January 1997 DIl COE I&RTS: Rev 3.0

Segment Installation

3. Create Database Roles. This step is performed by the DBA and creates the database
roles necessary to manage user access. Developers should match the role definitions to
the access needed by applications. Developers should not grant privileges that alow
users to manipulate the data objects’ structure (e.g. Oracle’'s Al t er privilege). Users
should not be alowed to create their own indexes either.

4. Create Database. This step is performed by the Owner and creates tables, views,
indexes, constraints, sequences, and any other data objects that are part of the
database. If the developer has defined multiple owners, a separate script should be
provided for each one. No objects will be created that will be owned by the DBMS
default accounts (Oracle’'s SYS or SYSTEM Sybase's sa) or by any other account
intended to be a DBA. Creation of constraints and indexes may be deferred to speed
the data load.

5. Load Data. This step is performed by the Owner and fills the data objects previousy
created. Although index and constraint creation were defined as occurring in the
previous step, developers may defer them until the data load is complete to improve
performance.

6. Create Constraints. This step is performed by the Owner and creates any indexes,
constraints, triggers, or other objects that are part of the database but whose creation
was deferred until after the data load.

7. Assign Grants. This step is performed by the Owner and grants the appropriate
access permissions on data objects to the database roles previoudly defined. Grants
shall not be made directly to users accounts. Grants shall not be made to generd
purpose users (e.g. Oracle’s PUBLI C user). Only the owner or the DBA are alowed
to administer grants. Other users will not be given permissions to further disseminate
grants.

8. Disconnect Owner. The last step — revoking database connection privileges from the
owner upon completion of the load process — is performed by the DBA. It ensures that
users cannot connect to the database as the owner of the data and thereby prevents
users from modifying schemas, indexes, or grants. Developers shall aso require the
database administrators to change the password of the owner account upon
completion of the database creation.

The flowchart in Figure 5-17 depicts the processing logic of the i nstal | directory’s
scripts which drive the creation of the database objects. Each package i nst al | script
executes the database definition scripts that connect to the COE Database Server to create
database objects and perform other data definition functions.

The package i nst al | script executes database definition scripts that actually connect to
the COE DBMS Server to create the database objects and perform other data definition
functions.

DIl COE I&RTS: Rev 3.0 January 1997 5-103

Segment Installation

Check Existence Executed by DBA
of DB Scripts

Create Data Storage

Y

Y Create Database Owner

Y

Create Database Roles

Executed by DBO Y

Create Database
Report Error Load Data

Y

Assign Grants

<<
Y

Disconnect Owner Executed by DBA

Figure5-17: Install ScriptsLogic

5.6.3.2 Database Segment Deinstall

Deinstallation has a different flavor with databases. First, databases are dynamic. As users
make changes to their databases, sites' data sets will diverge from each other. It is unlikely
that any two operationa sites will have exactly the same data at any point in time. Second,
inter-database dependencies restrict the ability to remove segments in a modular way.

However, developers need to provide the capability to remove the application’s server
segment from the Database Server. This means removing the database and al traces of its
presence from within the DBMS and removing al files from the Database Server. The

5-104 January 1997 DIl COE I&RTS: Rev 3.0

Segment Installation

following steps, at a minimum, must be accomplished. Note that the remove storage step
de-assigns the data files from the DBMS, it does not actually remove them from disk. The
last step, remove files, is executed from the operating system to delete the data files. Table
5-4 illustrates the logic required, using Oracle as an example.

Function User Oracle SQL Command
Remove roles DBA drop role...

Remove objects owner drop schema ...

Remove storage DBA drop tablespace ...
Remove owner DBA drop user ...

Remove files DBA N/A (Use OS commands)

Table 5-7: Application Database Deinstall

Within the Oracle server, combining the removal of storage and of data objects by using
the Oracle command * drop tablespace x including contents' is not recommended because it
tends to overload the DBMS' rollback segments. Developers should use the ‘drop
schema command followed by a*drop tablespace’ command instead.

When DEI NSTALL is being executed to support a segment upgrade or patch, the upgrade
or patch must support the deinstall/reinstall of data and supply the scripts to do so.

DEI NSTALL scripts must be set up to faill nondestructively if other database segments are
dependent on the segment to be deinstalled. This can usually be accomplished using the
COE Tool COELst DBDepends.

DIl COE I&RTS: Rev 3.0 January 1997 5-105

Security Consider ations

5.7 Security Considerations

COE-based systems typically operate in a classified environment. Therefore, the COE and
the segment developer both must address security considerations. This section describes
the security implications from a runtime environment perspective. It does not address
procedural issues such as proper labeling of electronic media, requirements for maintaining
paper trails showing originating authority, etc.

Certain restrictions described below are a result of how the operating system manages file
versus directory permissions. The most specific permission (i.e., on a file) does not
consistently override the least specific permission (i.e., on the file' s parent directory).

This section is evolving as security policies are developed for COE-based systems and as
legacy systems migrate to the COE. Further guidance will be issued as appropriate. Refer
to the DIl COE Chief Engineer for specific security concerns or for guidance in segment
development beyond the information contained here.

5.7.1 Segment Packaging

Segments shall not mix classification levels within the same segment. It is permissible to
create an aggregate that contains segments that are at different classification levels, but the
parent segment must dominate the security level of any child segments.

Features that are not releasable to foreign nationals shall be clearly identified through
documents submitted to the cognizant SSA when the segment is delivered. Software and
data that contain non-releasable features shall be constructed so that the features may be
removed as separate segments.

All classified data shall be constructed as separate segments. Developers shall submit
unclassified sample data to the SSA in a separate segment for the SSA to use during the
testing process.

5.7.2 Classification Identification

All segments shall identify the segment’s highest classification level in the Security
descriptor. Developers shall submit documentation to the SSA that clearly identifies what
features are classified and at what classification level.

5.7.3 Auditing

Segments that write audit information to the security audit log shall include the segment
prefix in the output. This is required so that audit information can be traced to a specific
segment.

5-106 January 1997 DIl COE I&RTS: Rev 3.0

Security Consider ations

5.7.4 Discretionary Access Controls

Developers shal construct their segments so that individual menu items and icons can be
profiled through use of COE profiling software. The profiling software allows a ste
administrator to limit an individual operator’s access to segment functions by menu item
and by icon.

5.7.5 Command-Line Access

Segments shall not provide an xterm window or other access to a command-line unless the
Chief Engineer grants prior permission. Segment features should be designed and
implemented in such a way that operators are not required to directly enter operating
system commands. Situations requiring superuser (i.e., root) command-line access shall
require the operator to log in as a normal user then use the su command (for Unix) to
become a superuser. Superuser access by other meansis not permitted unless the DIl COE
Chief Engineer grants prior authorization. Permission will be granted only for COE-
component segments.

Segments that provide command-line access shal audit entry to and exit from the
command-line access mode. Entry to command-line access mode shall require execution
of the system login process so that the user is required to enter a password. For example,
the Unix command

xterm -exec | ogin

will create an xterm window that requires the operator to provide a login account and
password.

Segments which require command-line access shall use the $CVDLI NE keyword (and the
required $KEY keyword) in the Direct segment descriptor to document that the segment
provides command-line access. If the segment provides superuser privileges, the
$SUPERUSER keyword must also be stated inthe Di r ect segment descriptor.

5.7.6 Privileged Processes

Segments shall minimize use of privileged processes (e.g., processes owned by root or
executed with an effective root user id). In all cases, privileged processes shall terminate
as soon as the task is completed. Privileged processes require prior Chief Engineer
approval.

(Unix) The names of the privileged processes must be listed in the Pr ocesses segment
descriptor with the $PRI VI LEGED keyword. The $KEY keyword must also be used to
indicate that authorization has been granted by the Chief Engineer.

(Unix) Shell scriptsthat SUI D or SA D to root are strictly forbidden.

DIl COE I&RTS: Rev 3.0 January 1997 5-107

Security Consider ations

5.7.7 Installation Consder ations

Segments shall not require Post I nstal | , Prel nstal | , or DEI NSTALL to run with
root privileges unless permission to do so is granted by the Chief Engineer.

Segments shall not alter the Unix umask setting established by the COE.

5.7.8 File Permissions
Segments shall satisfy at least one of the following two requirements:

1. The segment contains only subdirectories directly underneath the segment’s home
directory. All files are at least one level down from the segment’ s home directory.

2. The segment has no directories or files that have the equivalent of the Unix 777 file
permissions.

This requirement is an attempt to provide a reasonable balance between security
requirements and migration of legacy systems. The main issue is that files and directories
should have read/write/execute permissions set for authorized, and only authorized, users.

Segments shall not place any temporary filesin the directory pointed to by TMPDI R unless
deletion, alteration, or examination of such files by another segment or user poses no
Security concerns.

5.7.9 Data Directories

Segments which contain data items with mixed permissions (e.g., some are read-only,
some are write only, some are read/write) shal be split into separate directories
underneath the segment’s dat a subdirectory (for reasons explained in section 5.7). File
permissions on the separate directories shall be set to prevent unauthorized access to data
files. No file shall be “world writeable” (i.e., writeable by any user) unless authorized by
the Chief Engineer.

5-108 January 1997 DIl COE I&RTS: Rev 3.0

Database Consider ations

5.8 Database Considerations

COE-based systems commonly make extensive use of databases. Database considerations
are therefore of paramount importance in properly architecting and building a system. This
section provides more detailed technical information on properly designing databases and
database applications.

5.8.1 Database Segmentation Principles

A COE database server is a COTS DBMS product. It is used in common by multiple
applications. It is a services segment and part of the COE. However, different sites need
varying combinations of applications and databases. As aresult, databases associated with
applications cannot be included in the DBMS services segment. Instead, these component
databases are provided in a database segment established by the developer. The
applications themselves are in a software segment, also established by the developer, but
separate from the database segment. If the datafill for the database contains classified data
or is particularly large, that datafill must be in a separate data segment associated with the
database segment.

5.8.1.1 Database Segments

The DBMS is provided as one or more COTS segments. These segments contain the
DBMS executables, the core database configuration, database administration utilities,
DBMS network executables (both server and client), and development tools provided by
the DBMS vendor. Databases are provided as database segments. These segments contain
the executables and scripts to create a database and tools to load data into the database.

The following functional groupings are used to provide database services. The
configuration of COTS segments that provide them may vary depending on the DBMS
and the specific configuration chosen by DISA. The COTS segments will usualy be
provided as a COTS DBMS server segment and a COTS DBMS client segment, installed
on the database server platform and on the client workstations, respectively. Specific
implementations of COTS DBMS segments are discussed in Appendix F.

1. DBMS Server. This functiona group provides the DBMS executables, the DBMS's
network services executables, and the core database. Its components are usualy part
of the DBMS server segment.

2. DBMS Tools. This functional group provides the executables for other DBMS
applications (e.g. Oracle* Forms development tools). Its components are usualy part
of the DBMS server segment.

3. DBM S DBA Tooals. This functional group provides the executables for tools used by
database administrators (e.g. Oracle's ServerManager). Its components are usually
part of the DBMS server segment, but may aso be incorporated in the COTS DBMS
client segment.

DIl COE I&RTS: Rev 3.0 January 1997 5-109

Database Consider ations

4. DBM SClient Services. This functional group provides the client network services for
the DBMS and runtime executables for other DBMS applications (e.g.
Oracle*Forms 4.0 runf or m executable). Its components are installed on the
network’s application server and on individual workstations.

The following specific segments are prepared by developers to provide databases within a
COE-based system configuration.

1. Application Database Segment. This database segment contains a database
belonging to a component application. It isinstalled on the database server.

2. Application Client Segment. This software segment contains applications that access
a database created by an Application Database Segment. It is ingtalled on the
network’s application server or on individual workstations.

3. Application Database Data Segment. This data segment contains the data fill of a
component database when that data fill must be separated from the Application
Database Segment. It isinstalled on the database server.

5.8.1.2 Database Segmentation Responsibilities

Three groups are involved in the implementation of database segments. DISA, the
application developers, and the sites database administrators. The developers and DISA
work together to field databases and associated services for the DBAs to maintain. DISA
provides the DBMS as part of the COE. Developers provide the component databases.
Sites manage access and maintain the data. Users interact with the databases through
mission applications and may, depending on the application, be responsible for the
modification and maintenance of data in the databases.

5.8.1.2.1 DISA

DISA provides the core database environment in which the applications segments will be
integrated. The basic functionality provided with that core environment gets the database
server ready for developers to add their databases and for the sites database
administrators to add and administer users.

The initial database contains the data dictionary, system workspace and recovery storage,
storage for the database component of any vendor tools, and an initial allocation of user
workspace and temporary storage. The application servers and client workstations are set
up with the DBMS client environment so that users need only execute the environment
shell script to be able to connect to the server. Finally, the initial operating system and
DBMS accounts are established on the database server for the sites database
administrators.

5-110 January 1997 DIl COE I&RTS: Rev 3.0

Database Consider ations

5.8.1.2.2 Developers

Developers are responsible for providing everything associated with their application’s
database. Developers must define the owner account(s) for their base data objects. They
must define and create the data objects within those owner accounts. Aside from the data
proper, developers must determine and define the access levels and privileges that must
exist for their segment’s database. Database roles must be used to implement the users
access controls to ease the maintenance burden on the DBA.

Developers may implement specific auditing within their applications and databases,
but shall not modify the system’s security audits.

Developers shall provide scripts for the DBA’s use to add, modify and remove user
privileges.

5.8.1.2.3 Database Administrators

The System and Database Administrators at each sSite are responsible for creating,
modifying, and removing users DBMS and UNIX accounts usng COE Tools. For
security and ease of management, a “unitary login” or single account name for each user
for both the operating system and the DBMS is being adopted for COE-based system.
This means that users cannot use DBMS accounts defined by developers and that
developers cannot assume the existence of any particular user accounts except for
accounts created by the developer to support DBMS services. It also means, as required
by the system Security Policy, that database actions can be traced to the individual user.
Security auditing is the responsibility of the stes DBAs. They are implemented as each
Site needs using the audit features provided by the DBMS.

A DBA creates users DBMS accounts as part of the process of granting users access to
applications and their associated databases. COE Tools are used to accomplish this. In
order for these tools and the grants process to work properly and smoothly, the
developers must provide procedures, scripts, and instructions for the DBA’s use. Users
access will change over time and few users will have access to all applications. The
developers procedures must support the addition of users and the revocation of users
privileges. Since those privileges correspond to applications or sets of applications,
separate procedure scripts must be provided for each application or set. If an application
has multiple levels of privileges, then multiple procedures must be provided.

5.8.1.3 DBM S Tuning and Customization

The core DBMS instance is configured and tuned by DISA based on the combined
requirements of all developers databases taken together. Developers provide these
requirements during Segment Registration. This allows the DBMS Server segments to be
reasonably independent of particular hardware configurations and ignorant of specific
application sets. It is not tuned or optimized beyond that.

DIl COE I&RTS: Rev 3.0 January 1997 5-111

Database Consider ations

The final tuning of the DBMS cannot be accomplished until a complete configuration is
built and it has an operational load. Developers should provide information into the tuning
process, but should not make their applications dependent on particular tuning parameters.
Where a non-standard parameter is required for operations, developers must provide that
information to DISA so the DBMSS services segment can be modified accordingly.

The developers need to communicate any design assumptions and DBMS configuration
requirements that must be incorporated in the DBMS set-up. If, for example, developers
need any settingsin the Oraclei ni t DI | . or a file that are not the default settings for the
current DBMS version, that information needs to be provided to the Chief Engineer early
in the integration process for a particular release. Based on the impact of the change,
DISA can decide whether to modify the baseline server configuration or to develop a COE
DBMS patch segment to accompany the application’s database segment and modify the
in-place database instance.

Similarly, sizing of system recovery logs, log archiving directories, and users temporary
workspace is based on the combination of the requirements of the various applications that
use DBMS services. Developers must communicate their minimum requirements for these
so that the core DBMS is not set to be too small. Most of the application tools provided
by DBMS vendors are incorporated in the DBMS segment in the functional category of
Server Tools. To ensure that needed tools are available, developers should advise the
Chief Engineer what COTS tools they intend to use when registering the segment. When
such tools are used, the developer must identify the dependency under the database
application segment’s Requi r es descriptor.

Developers shall not modify the core DBMS instance's configuration. Extensions or
modifications of that configuration require the specific approval of the DIl COE Chief
Engineer and will be implemented by DISA in the COTS DBMS segment.

If developers modify any of the executable tools (e.g. add User Exits to
Oracle* Forms), then the modified version of the tool does not reside with the core
database services, but becomes a part of the application’s client segment. This
prevents conflicts among different modified versions of a core function. The
maintenance of that modified tool also becomes the responsibility of the developers.

5.8.2 Database I nter-Segment Dependencies

A key objective of the segmentation approach is to limit the interdependencies among
segments. |dedlly, database segments should not create data objects in any other schema
or own data objects that are dependent on other schemas. However, one purpose in
having a Database Server is to limit data redundancy and provide common shared data
sets. This means that there will usually be some dependencies among the databases in the
federation. This section addresses the management of such dependencies.

The following principles apply when inter-database dependencies exist:

5-112 January 1997 DIl COE I&RTS: Rev 3.0

Database Consider ations

The database schema within a segment that will own the parent object will create that
object.

The database schema within a segment that will own the child (dependent) object will
create that object.

Database schemas with inter-database dependencies will strive to keep those
dependencies in segments separate from the non-dependent portions of the schema.

The referencing object, not the one that is referenced, owns referential dependencies
(e.g. foreign keys). If the only dependencies are referential, separate segments are not
needed.

Schemas retain their autonomy. The developer of a dependency (including referential
dependencies) is responsible for maintaining that dependency should other developers
change their database schemeas.

The following are general requirements for database segments.

Database Segments shall not make modifications to another segment’s database. If a
schema needs to create data objects in some schema belonging to another segment,
those objects will be placed in a Database Segment that modifies the segment that
owns those objects. Developers shall not create indexes on another segment’s tables
because of the performance problems they can cause.

Developers will not modify the schema of another segment’s database. If changes to
table or column definitions are needed, they must be effected by the developer of the
database.

When dependencies exist they will be documented under the Requi r es descriptor of
the Segl nf o file. Object dependencies will be document under the Dat abase
descriptor of the Segl nf o file.

The following example illustrates (see Figure 5-18) how dependencies are to be created
and managed. The developers of database B need to attach atrigger to atable in database
A. This trigger will feed data from A to B every time that table is modified. Rather than
include the trigger as part of B’s Database Segment, it is put into a separate Database
Segment C, that modifies Database Segment A. C, the inter-database segment, is
dependent on the prior installation of both database segments and is so labeled under its
Requi r es descriptor. The table is listed in the $MODI FI ES section of the Dat abase
descriptor.

DIl COE I&RTS: Rev 3.0 January 1997 5-113

Database Consider ations

Database Segment A
created by
Developer A
Database Segment B
created by
Developer B

Database Segment C
created by
Developer B
(dependent on A and B)

Segment dependenciesarelisted in the Requir es descriptor
Object dependenciesarelisted in the Database descriptor

Figure 5-18: Inter-Database Dependencies

5.8.3 Loading Data into Database Segments

After the objects belonging to a Database Segment have been created in Post | nst al |,
they may need to be populated. Other objects, those containing dynamic data, may be
initially empty. Where needed, a database segment can perform initial data fill in the Load
Data phase of the Post | nst al | . Several methods are discussed below that can be used
to accomplish data loads. Method selection should be based on the amount of data to be
loaded.

If a small number of records are to be loaded into a table, the load can be accomplished
with insert statements embedded in an SQL command script. The following excerpt is an
example for loading data into Oracle.

5-114 January 1997 DIl COE I&RTS: Rev 3.0

Database Consider ations

sqgl pl us -silent DBSORT/ ${ DBO PWD} <<eof

| NSERT | NTO SORTSM BI DES (Ul C, SECUR, TI ME, SCLAS)
VALUES (‘* NO0O00O1',’ U ,sysdate, U);

| NSERT | NTO SORTSM BI DES (Ul C, SECUR, TI ME, SCLAS)
VALUES (‘ NO0002',’ U ,sysdate, U);

| NSERT | NTO SORTSM BI DES (Ul C, SECUR, TI ME, SCLAS)
VALUES (‘ NO0O003’',’ U ,sysdate, U);

eof

If a large amount of data is to be loaded into a database table, the use of a data loading
utility furnished by the RDBMS is usually more efficient. In this case, the utility can be
invoked from the LOAD _DATA section of the database definition script. Examples of
these data loading utilities are Oracle SQL* Loader, Informix dbload, Oracle or Informix
Import, and Sybase bcp. These utilities require that the data to be loaded be stored in afile
with a specific format.

Files used for data fill belong in the dat a subdirectory of the database segment. The data
directory within the segment can also be used as a‘mount point’ for CD-ROM, tape drive,
or other bulk storage devices. Thisis the preferred approach for large data loads. It allows
the segment to be filled without occupying disk space during the data fill.

The security classfication of the data to be loaded must be considered during the
implementation of a database segment. When a classified data fill is part of the database
segment, the entire segment becomes classified at the same level as the data. Therefore,
developers must separate the data fill from the database segment when the database
schemais not classified, but the contents are. The intent here is to keep database segments
unclassified as much as possible so schemas can be reused. The security classification of a
DIl COE system (e.g. GCSS) is a separate issue and is addressed in the security policy of
that system’s program office.

If a separate data segment is provided to accompany a database segment, that data
segment must have a DEI NSTALL capability. This frees storage after the data fill is
complete.

It can take along time to fill alarge database. Developers should indicate the approximate
load time in their Rel easeNot es. The data load time can be reduced by loading the
data before creating the database constraints and indexes. This should only be done with
clean data that has been tested against the database constraints.

DIl COE I&RTS: Rev 3.0 January 1997 5-115

Extending the COE

5.9 Extending the COE

Most properly designed segments will not require any extensions to the COE, except for
the need to add icons and menu items. This subsection describes some of the more
commonly required extensions, and techniques for addressing less frequently encountered
extensions.

5.9.1 Adding Menu Itemsto the Desktop

Adding menu items is usualy required only when installing a software segment. Two
pieces of information are required: the name of the affected account group(s) and the
menu items to add. Refer to the SegNane and Menus descriptors.

The instalation software appends the contents of the segment’s menu files to the
corresponding menu files in the affected account group(s). This forms a master template in
the affected account group’s dat a/ Menus subdirectory that is subsequently used to
create operator profiles. Segments should use the APPEND directive in the menu files to
add items. Refer to the Executive Manager Programmer’s Guide in the Developer's
Toolkit documentation for the format of menu files.

Previous COE releases included a system menu bar that was displayed at the top of the
screen, just below a security banner. The COE no longer automatically provides a system
menu bar. Segments that require a system menu bar must use the Executive Manager APIs
to explicitly add menu items when the application initializes. Developers may only add
menu items that are contained within the current user’s profile. The APIs are constructed
to prevent addition of menu items to the system menu bar that are not contained in the
current user profile.

Segments that use a system menu bar must also use the APIs to remove their system menu
bar additions when the application terminates. Refer to the Style Guide for guidance on
when it is appropriate to use a system menu bar versus desktop icons.

5.9.2 Adding Iconsto the Desktop

As with menus, adding iconsis usually required only for software segments. Two pieces of
information are required: the name of the affected account group and the icons to add.
Refer to the SegNane and | cons descriptors above.

The ingtallation software appends the contents of the segment’s icon files to a master list
located with affected account group(s). This forms a master template in the affected
account group’s dat a/ | cons subdirectory that is subsequently used to create operator
profiles. Refer to the Executive Manager APl documentation for the format of icon files.

Refer to the Style Guide for guidance on when it is appropriate to use a system menu bar
versus desktop icons.

5-116 January 1997 DIl COE I&RTS: Rev 3.0

Extending the COE

5.9.3 Modifying Window Behavior (Unix)

The Style Guide defines required window behavior for all segments. X Windows controls
window behavior through a collection of resource definitions. The resource definitions
consulted are as follows (if they exist):

Fileslocated inthedirectory / usr/ | i b/ X11/ app-defaul ts.
Filesin the directory pointed to by XAPPLRESDI R.

Resources inherited from the display’ s root window.

Thefile $HOVE/ . Xdef aul ts.

The file pointed to by XENVI RONMENT .

aghrowdPE

X Windows processes the controls in the order shown, and in such a way that the last
control specified overrides any preceding controls.

The COE must carefully control resources to avoid conflicts between segments.
Therefore, segments shal not place files in directories “owned” by X Windows (e.g.,
[usr/1ib/ X11/ app- def aul ts.) Instead, segments shall place their resourcesin the
subdirectory dat a/ app- def aul t s underneath the segment directory as shown in
Figure 5-2. At ingtal time, the instalation tools create a symbolic link underneath
$DATA DI R/ app- def aul t s to each of the files contained in the segment. For this
reason, segments must use their segment prefix to name all app-defaults used in this
manner.

Figure 5-2 aso shows that segments may place additional fonts underneath the segment’s
dat a/ f ont s subdirectory. At install time, the installation tools create a symbolic link
underneath $DATA DI R/ f ont s to point to each of these files. Segments shall use their
segment prefix to name font files used in this way.

The COE establishes the setting for environment variables XFONTSDI R,
XAPPLRESDI R, and XENVI RONVENT . Segments shall not modify their value. They are
set as defined in subsection 5.3.

Motif follows a similar strategy for setting resources. The COE uses the Motif software
provided with the Common Desktop Environment (CDE) software. Refer to the
Developer’s Toolkit documentation for more details on how Motif operates within the
CDE environment.

Segments may not place files in any directory “owned” by Motif (eg.,
[fusr/1ib/ X11/ app- def aul t s/ MvMm) or CDE, nor may segments alter the account
group’s. mant ¢ resourcefile, if it exists.

To summarize, for DIl compliance:

Segments shall not modify vendor distributed X Windows, Motif, or CDE system
resources (Xdef aul t s, rgb. t xt , etc.).

DIl COE I&RTS: Rev 3.0 January 1997 5-117

Extending the COE

Segments shall not place files in the X, Motif, or CDE distribution directories (e.g.,
[usr/1ib/X11/ app-defaults).

Segments shall use the segment prefix to uniquely name files underneath the segment’s
dat a/ f ont s and dat a/ app- def aul t s subdirectories.

Segments shall not modify the COE established setting for XAPPLRESDI R,
XENVI RONMVENT, or XFONTSDI R.

Segments shall not modify the affected account group’s. mant c file, if one exists.

5.9.4 Using Environment Extension Files (Unix)

The Regr dScri pt s descriptor allows extensions to the affected account group’s “dot”
files(. cshrc,. | ogi n, etc.). Thisis most frequently done to add environment variables.
However, unregulated use of environment variables is detrimental to the system. The
amount of space the operating system reserves for environment variables is limited and
loading a large number of segments could quickly exhaust this scare resource. Each time a
process is spawned, the child process inherits environment variables from the parent.
Resolving a large number of environment variables can take a significant amount of time
and hence degrade system performance.

DIl compliance requires adherence to the following guidelines:

Do not include development environment variables in runtime environment scripts or
extension files.

Use “short names’ for environment variables. Unix stores environment variable names
as character strings in the environment space, so the longer the variable name, the
faster environment variable space is exhausted.

Reuse environment variables already defined by the COE or affected account group.

When feasible and efficient, use operating system services (such as pipes and streams)
or data files to communicate with other segments, or between components within the
same segment.

Do not use environment variables to communicate control data between components
within the same segment. Use operating system services or datafiles.

Do not define environment variables that can be derived from other environment
variables. For example, to define MYSEG_BI N through

5-118 January 1997 DIl COE I&RTS: Rev 3.0

Extending the COE

setenv MYSEG HOVE / h/ MySeg
setenv MYSEG BI N $MYSEG_HOVE/ bi n

wastes environment variable space. The COE guarantees a predictable directory
structure, so SMYSEG _HOVE/ bi n can be used directly instead of SMYSEG_BI N.

When feasible, have segment components create environment variables once they
begin executing through put env or through “sourcing” a file containing needed
environment variables. This approach ensures that segment-specific environment
variables are inherited locally by a single segment, not globally by all segments.

5.9.5 Using Community Files

Community files are any files that reside outside a segment’s assigned directory. (Data
files owned by the segment underneath / h/ dat a are considered an exception.) Most
required community file modifications are handled automatically by the installation
software through descriptor directory files. The Conmruni t y descriptor is used when the
installation software cannot provide the modifications required.

All community file modifications are carefully scrutinized at integration time because of
the potential for conflict with other segments or the runtime environment. Developers
should seek guidance from the Chief Engineer before modifying any COTS community
files (those owned by Unix, X Windows, Motif, Oracle, Sybase, etc.).

5.9.6 Defining Background Processes

When an operator logs in, the operating system uses various files to establish a runtime
environment context. Segments use the Processes descriptor file to add other
background processes to the runtime environment.

The COE differentiates between nine different types of processes:

Boot Processes launched each time the computer is booted or rebooted.
Designate boot processes with the $BOOT keyword.

DCE Boot DCE processes launched each time the computer is booted or
rebooted. Designate DCE boot processes with the $DCEBOOT
keyword in the DCEDescr i p descriptor.

DCE Demand DCE processes launched on demand by dced. Designate such
processes with the $DCEDEMAND keyword in the DCEDescr i p
segment descriptor.

RunOnce Processes launched the next time the computer is rebooted. These
are “one-shot” processes and are only run the next time the

DIl COE I&RTS: Rev 3.0 January 1997 5-119

Extending the COE

computer is rebooted, but not for reboots thereafter. Designate
RunOnce processes with the $RUN_ONCE keyword.

Periodic Processes launched at boot time that run periodically at specified
intervals (e.g., 6 hrs, 24 hrs). These processes are equivalent to
Unix cron process. Use the $PERI ODI C keyword to indicate
these types of processes.

Privileged Processes that require “superuser” privileges to execute. Use the
$PRI VI LECGED keyword to indicate these type of processes.

Background Processes launched the first time an operator logs in after a reboot;
these processes remain active in the background even after the
operator logs out. Designate background process with the
$BACKGROUND keyword.

Session Processes launched when an operator logs in and remaining active
only while the operator is logged in. Designate session processes
with the $SESSI ON keyword.

Transient Processes launched in response to operator selections from an icon
or menu. Transient processes typically display a window on the
screen, perform some specific function in response to operator
actions, and then terminate. In some cases, the processes spawned
may stay active for the length of the session, but in all cases, the
Executive Manager terminates transient processes when the
operator logs out. Designate transient processes through the
Menus and | cons descriptors.

Note: Because of the potentia impact to other segments, system
performance, and system integrity, all processes except DCE
Demand, Session, and Transient processes require prior approval
by the Chief Engineer. Boot, DCE Boot, privileged, and periodic
processes are strongly discouraged.

5.9.7 Reserving Disk Space

Segments frequently require additional disk space to accommodate growth over time as
the system operates. For example, communications logs are empty when the system is
initialy installed, but will occupy space as messages are received and logged. Segments
may reserve additional disk space through the Har dwar e descriptor.

The installation software keeps track of how much disk space is actually in use and how
much is reserved. A segment will not be installed if the amount of space it occupies, plus
any space it reserves, exceeds the amount of unreserved disk space. The ingtallation
software alows the operator to select how full the disk can be (80, 85, 90, or 95% of

5-120 January 1997 DIl COE I&RTS: Rev 3.0

Extending the COE

capacity). These safeguards are in place to avoid filling up the disk, but segments are
responsible for detecting when the amount of space requested is not available.

In rare situations, segments may require space on multiple disk partitions. See the
$PARTI TI ONS keyword for the Har dwar e descriptor.

5.9.8 Using Temporary Disk Space

Segments may require temporary disk space during segment installation and during system
operation. The COE provides techniques for accommodating both uses for temporary
space.

Temporary disk space may be requested during segment instalation through the
$TEMPSPACE keyword in the Har dwar e descriptor. The installation software sets the
COE_TMPSPACE environment variable to point to the location where temporary space is
allocated. This environment variable is defined only during segment instalation. The
installation software automatically deletes al files in this temporary area when segment
installation is completed.

The environment variable TMPDI R points to a temporary directory that may be used
during system operation. However, there is a limited amount of disk space set aside for
temporary storage so it must be used sparingly. A better approach is for segments to store
temporary datain their own dat a subdirectory.

Segments that use TMPDI R must delete temporary files when they are no longer required.
For Unix systems, all files in this directory are automatically deleted when the system is
rebooted. This is not true for NT platforms. All segments, as a matter of good
programming practices, should delete temporary files when they are no longer needed.

5.9.9 Defining Sockets

Requests to modify the / et ¢/ servi ces file to add sockets is done through the
COESer vi ces descriptor file. This control point for requests to add socket names and
ports helps avoid conflicts between segments. Port numbers in the range 2000-2999 are
reserved for COE segments. Segments should avoid creating sockets with port numbers
less than 1000 since these are generally reserved for operating system usage.

DIl COE I&RTS: Rev 3.0 January 1997 5-121

Miscellaneous T opics

5.10 Miscellaneous Topics

This subsection discusses a variety of miscellaneous topics that are related to
segmentation, use of the DIl COE, etc.

5.10.1 Color Table Usage

The COE must carefully control how the color table is used to avoid objectionable “false
color” patterns that may appear when mouse focus changes from one window to another.
The Syle Guide gives guidance on what colors to use from a human factors perspective,
but it does not provide guidance on how segments are to coordinate such usage through
the COE.

This document will be expanded to include guidance for color table usage as the impact of
COTS products and legacy applicationsis evaluated.

5.10.2 Shared Libraries

The COE strongly encourages the use of shared libraries to reduce memory requirements.
Developers may create shared libraries (DLLs for NT platforms) through use of the
Shar edFi | e segment descriptor.

(Unix) Developers should also link to X and Motif shared libraries to reduce memory
requirements. The Motif libraries provided by CDE should be used instead of the libraries
provided by Motif or some other source. This alleviates the need to maintain Motif shared
libraries used both by the desktop (e.g., CDE) and other applications.

5.10.3 Adding Network Host Table Entries

Workstation |IP addresses and hostnames are site-dependent. Hostnames in particular are
most often selected by the site and usually cannot be predicted in advance. Therefore,
segments shall not include any assumptions about a workstation having a specific name or
following any particular naming convention, nor make any assumptions about a specific |P
address class.

Segments should rarely need to add entries to the network host table. An operator usually
establishes such entries through system administration functions. For those situations
where a segment must do so, the $HOSTS keyword in the Net wor k descriptor alows IP
addresses, hostnames, and aliases to be added to the network host table. The address may
be added to either the local host table, or to the DNS/NIS/NIS+ maintained host table.

Prior permission must be given by the DIl COE Chief Engineer to use the $HOSTS
keyword, and permisson will be granted only for COE-component segments.
Ver i f ySeg will issue awarning for any segment which uses the $HOSTS keyword, and
awarning if the segment does not include the $KEY keyword. A future release will issue
an error if the segment does not provide a valid authorization key.

5-122 January 1997 DIl COE I&RTS: Rev 3.0

Miscellaneous T opics

5.10.4 Registering Servers

Servers are registered with the COE through the $SERVERS keyword in the Net wor k
descriptor. Only COE-component segments may register servers. Prior permission must be
given by the DIl COE Chief Engineer to use the $SERVERS keyword. Ver i f ySeg will
issue a warning for any segment which uses the $SERVERS keyword and gtrictly fail the
segment if it is not a COE-component segment.

A segment that needs to determine the location of a server may use the
CCEFi ndSer ver function (see Appendix C).

5.10.5 Adding and Deleting User Accounts

Segments are not normally alowed to create operator accounts (e.g., Unix user login
accounts). Segments may create system accounts, through the COESer vi ces descriptor,
for the purpose of establishing file ownership. Operator accounts are normally added to
the system through use of the Security Administrator application. They are customizable
by security classification level, by access permissions granted or denied against application
objects, and by granting or denying access to menu or icon items. The segment descriptors
Acct Group, Security, Perm ssions, Menus, and | cons provide these controls.

Figure 5-3 shows that operator accounts may be global or local. This attribute is specified
when the operator account is created. If the server that contains operator accounts is
down, global operator logins will be unavailable until the server is restored.

Profiles may also be global or local. This attribute is determined when the profile is
created. If a global profile is not available at login time (e.g., the server is down), login
proceeds but the operator is notified of the problem and the system is placed in a safe
state.

Some segments require the ability to perform additional operations when a user account is
created, or to perform cleanup operations when a user account is deleted. This is done by
using the $ACCTADD and $ACCTDEL keywords in the Di r ect descriptor. Moreover,
the $PROFADD, $PROFDEL, and $PROFSW TCH can be used to perform segment-
dependent operations when user profiles are created or deleted, or when a user switches
from one profile to another. Due to security implications, these keywords require prior
permission from the Chief Engineer and use of the $KEY keyword.

5.10.6 Character-Based Applications

Support for character-based interfaces is provided through the Char | F account group.
An account is established for individual users through the same process as al other
accounts, but the account is identified as a character-based interface account only.
Operator profiles may be set up, but only those segments that support a character-based
interface (seethe Di r ect descriptor) are accessible.

DIl COE I&RTS: Rev 3.0 January 1997 5-123

Miscellaneous T opics

The remote user connects to the designated server through a remote login sesson. Once
connected, the user is prompted for a login account and password. A menu of options,
such as

0) Exit
1) AdHoc Query
2) TPFDD Edi t

Enter Opti on:

is presented to the user. The option selected is executed and results are displayed on the
user’s remote, character-based display.

5.10.7 License Management

The COE contains a license manager to administer COTS licenses. Vendors take a variety
of approaches in how they control and administer licenses. For this reason, the techniques
for automating license management are still under development and are being handled
manually. Refer to the DIl COE Chief Engineer for further assistance in creating a
segment that requires alicense manager.

5.10.8 Remote versus L ocal Segment Execution

Segments which are remotely launchable are designated by the $REMOTE keyword in the
Di rect descriptor. This feature is not currently implemented, but is reserved for future
implementation. Developers are encouraged to use the SREMOTE keyword and design
their segments to account for local versus remote execution. Thus, when this feature is
fully implemented, developer segments will be positioned to take advantage of the

capability.
5.10.9 Modifying Network Configuration Files

Setting up a network requires modification of several network configuration files to set
netmasks, identify subnets and routers, etc. Proper network configuration is essentia for
proper system operation and performance. For this reason, only COE-component
segments may establish network configuration parameters. This is accomplished through
the Net wor k descriptor file.

Prior approval from the DIl COE Chief Engineer is required. Veri f ySeg will issue a
warning for any segment that uses the Net wor k descriptor and strictly fail the segment if
it is not a COE-component segment. Note that the $KEY keyword must also be specified
to give avalid authorization key.

5.10.10 Establishing NFS Mount Points

NFS mount points are defined through the $MOUNT keyword in the Net wor k descriptor.
Establishing mounted file systems can seriously degrade system performance. Poor design

5-124 January 1997 DIl COE I&RTS: Rev 3.0

Miscellaneous Taopics

choices that result in several different mount points can create single points of failure, or
result in sequencing problems when the system is loaded or rebooted. For these reasons
mount points are restricted to COE-component segments.

Prior approva from the DIl COE Chief Engineer is required to create NFS-mounted file
systems. Veri f ySeg will issue a warning for any segment which uses the $MOUNT
keyword and will strictly fail the segment if it is not a COE-component segment. Note that
the $KEY keyword is required.

DIl COE I&RTS: Rev 3.0 January 1997 5-125

Miscellaneous Taopics

This pageisintentionally blank.

5-126 January 1997 DIl COE I&RTS: Rev 3.0

